Nemetz O.H. Tibor emlékére május 9.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Nemetz O.H. Tibor emlékére. 2011 május 9."

Átírás

1 Adatbiztonság és valószínűségszámítás 1 / 22 Adatbiztonság és valószínűségszámítás Nemetz O.H. Tibor emlékére Csirmaz László Közép Európai Egyetem Rényi Intézet 2011 május 9.

2 Adatbiztonság és valószínűségszámítás 2 / 22 Nemetz O.H. Tibor,

3 Adatbiztonság és valószínűségszámítás 3 / 22 Életrajzi adatok Vázlat 1 Életrajzi adatok 2 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? 3 Egy kutatási probléma 4 Tanulás hibával

4 Adatbiztonság és valószínűségszámítás 4 / 22 Életrajzi adatok Munkássága Rényi Intézet (lánykori nevén Matematikai Kutató) 1969-től Középiskolai Matematikatanítási Kisérlet ( ) Tankönyvek (valószínűségszámítás, statisztika) Oktatás, pedagógia ICME 6 szervezési munkái (1988) Eurocrypt 92 Balatonfüreden Adatbiztonsági szakértő Vízjel projekt (2004) Vendégkutató/tanár (Ottawa, Frankfurt, Bécs, Ankara)

5 Adatbiztonság és valószínűségszámítás 5 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Vázlat 1 Életrajzi adatok 2 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? 3 Egy kutatási probléma 4 Tanulás hibával

6 Adatbiztonság és valószínűségszámítás 6 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Nyelvstatisztikák Nemetz Tibor kommentárja: Eredményes rejtjelfejtés csak megbizható nyelvstatisztikai táblázatok birtokában képzelhető el. Napjaink számítástechnikai szintje mellett szinte már elképzelhetetlen, hogy egy ilyen táblázat elkészítése még a 70-es évek végén sem volt problémamentes.... Ezekből arra is lehet következtetni, hogy az egymástól 5-8 távolságra elhelyezkedő betűk egymástól statisztikailag függetlenek.

7 Adatbiztonság és valószínűségszámítás 7 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Írott nyelv entrópiája Kérdés Az írott szöveg egyetlen betűje hány bit információt hordoz?

8 Adatbiztonság és valószínűségszámítás 7 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Írott nyelv entrópiája Kérdés Az írott szöveg egyetlen betűje hány bit információt hordoz? Különböző nyelvekre, különböző témakörökre a válasz más és más. Határt szab a lehetséges tömörítés mértékére. Angolra C. Shannon adott becsléseket. Nemetz: csonkított szövegek rekonstruálhatóságával becsül!

9 Adatbiztonság és valószínűségszámítás 7 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Írott nyelv entrópiája Kérdés Az írott szöveg egyetlen betűje hány bit információt hordoz? Különböző nyelvekre, különböző témakörökre a válasz más és más. Határt szab a lehetséges tömörítés mértékére. Angolra C. Shannon adott becsléseket. Nemetz: csonkított szövegek rekonstruálhatóságával becsül! Tétel (Nemetz, Simon Judit) Az írott magyar nyelv entrópiája 1.13 és 1.49 között van.

10 Adatbiztonság és valószínűségszámítás 8 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Szerencsekerék hogyan játsszuk?

11 Adatbiztonság és valószínűségszámítás 9 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Szerencsekerék hogyan játsszuk? Tippelhetünk mássalhangzót, ha van, megkapjuk a forgatott összeget. Vásárolhatunk magánhangzót. Milyen stratégiát válasszunk?

12 Adatbiztonság és valószínűségszámítás 9 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Szerencsekerék hogyan játsszuk? Tippelhetünk mássalhangzót, ha van, megkapjuk a forgatott összeget. Vásárolhatunk magánhangzót. Milyen stratégiát válasszunk? Mássalhangzókat gyakoriságuk alapján. Jól jön a nyelvstatisztika. De nem mindig segít!

13 Adatbiztonság és valószínűségszámítás 10 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Tudja?

14 Adatbiztonság és valószínűségszámítás 10 / 22 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? Tudja? A játékos megfejtése : TUDJA, HOL SZERET A CÁPA

15 Adatbiztonság és valószínűségszámítás 11 / 22 Egy kutatási probléma Vázlat 1 Életrajzi adatok 2 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? 3 Egy kutatási probléma 4 Tanulás hibával

16 Adatbiztonság és valószínűségszámítás 12 / 22 Egy kutatási probléma Egy kutatási probléma (Nemetz) Kódolás Az üzenetet (nyelvi szöveg) felbontjuk B hosszúságú blokkokra, az n-edik blokk M n. A kódolás blokkonként: C n = π(m n ), ahol π egy titkos permutáció. Feladat N kódolt blokkból: C 1,..., C N, keressük meg a π permutációt. Megoldási ötlet M-ben a szomszédos betűk erősen korrelláltak, a távoliak függetlenek. Minden 1 i B-re keressük meg azt a k-t, amire Prob ( C-ben az i-edikre következő jel a k-adik ) maximális. Ekkor ha π(j) = i, akkor π(j + 1) = k, amiből π rekonstruálható.

17 Adatbiztonság és valószínűségszámítás 13 / 22 Egy kutatási probléma Egy kutatási probléma (Nemetz) F (a b) annak valószínűsége, hogy az a betű következik b után. Annak valószínűsége, hogy C n blokkban az i-edikre következő jel a k-adik: F ( C n (k) C n (i) ). Az, hogy ez mindegyik blokkban így van, ezek szorzata: n F ( C n (k) C n (i) ). Megvalósítás Minden i-re válasszuk azt a k-t (azokat a k-kat), amire az alábbi log-likelihood maximális (a legnagyobb értékeket veszi fel): N log ( F (C n (k) C n (i) ). n=1 Ebből rekonstruáljuk a π permutációt.

18 Adatbiztonság és valószínűségszámítás 14 / 22 Egy kutatási probléma Egy kutatási probléma (Nemetz) A problémák 1 Ha mindegyik permutáció egyformán valószínű, hány blokkra van szükség (N =?) ahhoz, hogy a fenti eljárás egyértelműen megadja π-t a B blokkhossz függvényében tipikus nyelvi szövegekre, mondjuk 1/2 valószínűséggel? 2 Hogyan befolyásolja az eredményt, hogy az F (a b) valószínűségekre csak empírikus becsléseink vannak? 3 Hogyan lehet a π permutációt gyorsan megtalálni, ha minden i-re több k-t is figyelembe veszünk? (Ilyenkor az összes k valószínűleg közel lesz i rákövetkezőihez illetve megelőzőihez.)

19 Adatbiztonság és valószínűségszámítás 15 / 22 Tanulás hibával Vázlat 1 Életrajzi adatok 2 Alkalmazott statisztika, avagy hogyan nyerjünk a Szerencsekerékben? 3 Egy kutatási probléma 4 Tanulás hibával

20 Adatbiztonság és valószínűségszámítás 16 / 22 Tanulás hibával A probléma Tanulás R n -ben van egy féltér. Bármely x R n -re megkérdezhetjük, benne van-e, és igen/nem választ kapunk. Tanuljuk meg hol van a féltér. Tanulás hibával A fenti kérdésre ε hibával kapjuk meg a helyes választ. Tanuljuk meg hol van a féltér.

21 Adatbiztonság és valószínűségszámítás 17 / 22 Tanulás hibával A probléma kriptográfiai változat Tanulás Van egy ismeretlen s F n 2 vektor. Bármely x Fn 2 -re megkérdezhetjük az s, x {0, 1} skaláris szorzat értékét. Találjuk meg az s vektort. Könnyű: n kérdés után van egy lináris egyenletrendszerünk s-re. Tanulás hibával A fenti kérdésre ε hibával kapjuk meg a helyes választ. Találjuk meg az s vektort. c n kérdés után a megoldás egyértelmű, de azt hogyan találjuk meg polinom idő alatt?

22 Adatbiztonság és valószínűségszámítás 18 / 22 Tanulás hibával Tanulás hibával Ha a tanuló x F n 2 vektorokat egymástól függetlenül egyenletes valószínűséggel kell választani: a feladat exponenciálisan nehéz. számos új kriptográfiai protokoll használja (pl. Ajtai Miklós legrövidebb rácsvektort használó protokollja).

23 Adatbiztonság és valószínűségszámítás 18 / 22 Tanulás hibával Tanulás hibával Ha a tanuló x F n 2 vektorokat egymástól függetlenül egyenletes valószínűséggel kell választani: a feladat exponenciálisan nehéz. számos új kriptográfiai protokoll használja (pl. Ajtai Miklós legrövidebb rácsvektort használó protokollja). Ha a tanuló x F n 2 vektorokat mi választhatjuk: az s vektor gyorsan megtalálható (polinom idő alatt). ez a nevezetes Goldreich Levin tétel (1989). Nemetz Tibor a tételt már korábban ismerte és használta.

24 Adatbiztonság és valószínűségszámítás 19 / 22 Tanulás hibával Visszavezetés Az x kérdésre a (nem feltétlenül helyes) választ A(x) jelöli. Módosított feladat: Legyen v egy véletlen vektor; határozzuk meg az A(x) válaszokból (nagy valószínűséggel) az s, v szorzat értékét! Véletlenül választott lineárisan független v i vektorokra elegendően nagy (például > 1 1/n 3 ) valószínűséggel megkeressük az s, v i szorzatok értékét. Innen a s, v 1 = b 1 s, v 2 = b 2... s, v n = b n lineáris egyenletrendszer megoldása megadja az ismeretlen s vektort.

25 Adatbiztonság és valószínűségszámítás 20 / 22 Tanulás hibával Határozzuk meg s, v értékét! Legyenek a 1, a 2,..., a k véletlen vektorok (k kicsi) és tegyük fel hogy az s, a i = a i értékeket tudjuk. Mivel s, v + i λ ia i = s, v + i λ i s, a i, azért az s, v értékét becsülhetjük így: { A ( v + i λ ia i ) i λ ia i : λ i {0, 1} }, (1) ahol mindegyik becslés hibája ε. Legyen s, v -t az (1) alatti 2 k darab 0/1-ből a többség.

26 Adatbiztonság és valószínűségszámítás 20 / 22 Tanulás hibával Határozzuk meg s, v értékét! Legyenek a 1, a 2,..., a k véletlen vektorok (k kicsi) és tegyük fel hogy az s, a i = a i értékeket tudjuk. Mivel s, v + i λ ia i = s, v + i λ i s, a i, azért az s, v értékét becsülhetjük így: { A ( v + i λ ia i ) i λ ia i : λ i {0, 1} }, (1) ahol mindegyik becslés hibája ε. Legyen s, v -t az (1) alatti 2 k darab 0/1-ből a többség. Az (1) alatti becslések páronként függetlenek, Csebisev szerint a hiba valószínűsége legfeljebb 2ε(1 ε) (1 2ε)2 k.

27 Adatbiztonság és valószínűségszámítás 21 / 22 Tanulás hibával Összefoglalás Az eljárás Legyen k = 3 log n. Válasszunk k véletlen vektort: a 1,..., a k Megtippeljük az s, a i értékeket (2 k = n 3 lehetőség) Adott tipp mellett kiszámítjuk s, v i értékét (minden i-re 2 k kérdés és 1/2 k hiba) A kapott v i -kből kiszámítjuk s-et. Ellenőrizzük, hogy a kapott s érték jó-e (további n kérdés). Mivel valamelyik tipp jó, O(n 6 ) kérdéssel 1/n 2 -nél kisebb hibával megkapjuk a keresett s-et.

28 Adatbiztonság és valószínűségszámítás 22 / 22 Tanulás hibával Köszönöm a figyelmet!

2. Hatványozás, gyökvonás

2. Hatványozás, gyökvonás 2. Hatványozás, gyökvonás I. Elméleti összefoglaló Egész kitevőjű hatvány értelmezése: a 1, ha a R; a 0; a a, ha a R. Ha a R és n N; n > 1, akkor a olyan n tényezős szorzatot jelöl, aminek minden tényezője

Részletesebben

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28.

Miskolci Egyetem. Diszkrét matek I. Vizsga-jegyzet. Hegedűs Ádám Imre 2010.12.28. Miskolci Egyetem Diszkrét matek I. Vizsga-jegyzet Hegedűs Ádám Imre 2010.12.28. KOMBINATORIKA Permutáció Ismétlés nélküli permutáció alatt néhány különböző dolognak a sorba rendezését értjük. Az "ismétlés

Részletesebben

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai

Lineáris Algebra GEMAN 203-B. A három dimenziós tér vektorai, egyenesei, síkjai Matematika előadás elméleti kérdéseinél kérdezhető képletek Lineáris Algebra GEMAN 203-B A három dimenziós tér vektorai, egyenesei, síkjai a) Hogyan számítjuk ki az a = (a 1, a 2, a 3 ) és b = (b 1, b

Részletesebben

MATEMATIKA FELADATGYŰJTEMÉNY

MATEMATIKA FELADATGYŰJTEMÉNY Pék Johanna MATEMATIKA FELADATGYŰJTEMÉNY Nem matematika alapszakos hallgatók számára Tartalomjegyzék Előszó iii. Lineáris algebra.. Mátrixok...................................... Lineáris egyenletrendszerek..........................

Részletesebben

Sztochasztikus folyamatok 1. házi feladat

Sztochasztikus folyamatok 1. házi feladat Sztochasztikus folyamatok 1. házi feladat 1. Egy borfajta alkoholtartalmának meghatározására méréseket végzünk. Az egyes mérések eredményei egymástól független valószínûségi változók, melyek normális eloszlásúak,

Részletesebben

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer

Lineáris programozás. Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Lineáris programozás Modellalkotás Grafikus megoldás Feladattípusok Szimplex módszer Feladat: Egy gyár kétféle terméket gyárt (A, B): /db Eladási ár 1000 800 Technológiai önköltség 400 300 Normaóraigény

Részletesebben

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Az osztályozóvizsgák követelményrendszere 9.Ny osztály Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma Algebra és számelmélet Alapműveletek az egész és törtszámok körében Műveleti sorrend,

Részletesebben

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában

XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus. A véletlen nyomában XIII. Bolyai Konferencia Bodnár József Eötvös József Collegium, ELTE TTK, III. matematikus A véletlen nyomában Mi is az a véletlen? 1111111111, 1010101010, 1100010111 valószínűsége egyaránt 1/1024 Melyiket

Részletesebben

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 )

2) = 0 ahol x 1 és x 2 az ax 2 + bx + c = 0 ( a,b, c R és a 0 ) Fogalom gyűjtemény Abszcissza: az x tengely Abszolút értékes egyenletek: azok az egyenletek, amelyekben abszolút érték jel szerepel. Abszolútérték-függvény: egy elemi egyváltozós valós függvény, mely minden

Részletesebben

A továbbhaladás feltételei fizikából és matematikából

A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei fizikából és matematikából A továbbhaladás feltételei a 9. szakközépiskolai osztályban fizikából 2 Minimum követelmények 2 A továbbhaladás feltételei a 10. szakközépiskolai osztályban

Részletesebben

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból A vizsga formája: Feladatlap az adott évfolyam anyagából, a megoldásra fordítható idő 60 perc.

Részletesebben

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag!

Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! Részletes követelmények Matematika házivizsga Az áprilisi vizsga anyaga a fekete betűkkel írott szöveg! A zölddel írott rész az érettségi vizsgáig még megtanulandó anyag! A vizsga időpontja: 2015. április

Részletesebben

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013

Sztojka Miroszláv LINEÁRIS ALGEBRA Egyetemi jegyzet Ungvár 2013 UKRAJNA OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUMA ÁLLAMI FELSŐOKTATÁSI INTÉZMÉNY UNGVÁRI NEMZETI EGYETEM MAGYAR TANNYELVŰ HUMÁN- ÉS TERMÉSZETTUDOMÁNYI KAR FIZIKA ÉS MATEMATIKA TANSZÉK Sztojka Miroszláv LINEÁRIS

Részletesebben

ÉS TESZTEK A DEFINITSÉG

ÉS TESZTEK A DEFINITSÉG MÁTRIX DEFINITSÉGÉNEK FOGALMA ÉS TESZTEK A DEFINITSÉG ELDÖNTÉSÉRE DR. NAGY TAMÁS egyetemi docens Miskolci Egyetem Alkalmazott Matematikai Tanszék A bemutatott kutató munka a TÁMOP-..1.B-10//KONV-010-0001

Részletesebben

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET

BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM. Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPESTI KÖZGAZDASÁGTUDOMÁNYI EGYETEM Puskás Csaba, Szabó Imre, Tallos Péter LINEÁRIS ALGEBRA JEGYZET BUDAPEST, 1997 A szerzők Lineáris Algebra, illetve Lineáris Algebra II c jegyzeteinek átdolgozott

Részletesebben

Lineáris Algebra gyakorlatok

Lineáris Algebra gyakorlatok A V 2 és V 3 vektortér áttekintése Lineáris Algebra gyakorlatok Írta: Simon Ilona Lektorálta: DrBereczky Áron Áttekintjük néhány témakör legfontosabb definícióit és a feladatokban használt tételeket kimondjuk

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 0613 ÉRETTSÉGI VIZSGA 007. május 8. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Formai előírások: Fontos tudnivalók

Részletesebben

ó ö ó Í Í Ó Í Á Í Í Í Ó Ú ó Í Ó ó Ó ó Í Ó Ó Ó Ó Ó Ó Ó ó Á Ó Ó ó ö ó Ú Í Í Ó Ó Ó Í Ó Ú É Í Í Í Ú Ó ő Í Í Ó Ó Ú Ó Ó ó Í ó Á Ó Ó Ó ó ó Í Ó Ó Ó Ó Ó Í Ú Í Í É ö Ó Ó Í Ó Ú Ó Ú Ó Ö Í Í Ú Ó Ó ó Ű Ó Ó Ó Ó Ó Ó Ó

Részletesebben

ö ö ü ü ű ö Í ö ö ö ű Í ü ű ö ö ö ü ű ö ö ö ö ö Í ű ű ü ü Ó ű ö ö É ü ö ö ö ü ü É ö ü ö Á ü Á ű ü ű ű ű ű Í ÍÁ ü ö ö ö ü ü ü É ü ü Á ö ü ü ö ö ű ü ö ü ü ü ö ü ü ü ö ü ü ü ö ö ü ű ö ű ü ö ü ü ö ű ü Í ü

Részletesebben

Í ű Á Á ű ü ü ü ű Í ü ü ü ü Í ű ű ü ü ű ü ü ű ü Í Í É Á Á Á É Á Ö Á Á Á ü É Ó Á Á Á Á É É Á ű É É Á ű ű Á Í Á Í É Á Á Á Á Á Á Ó Á ű ű ü ű ű ű ű ű ü ű Ó ü ű ü ü ű ü ű Í Í ü ű ü ü ü ü ü ű ü ű ü ü ü ü ü ű

Részletesebben

Mátrixaritmetika. Tartalom:

Mátrixaritmetika. Tartalom: Mátrixaritmetika Tartalom: A vektor és mátrix fogalma Speciális mátrixok Relációk és műveletek mátrixokkal A mátrixok szorzása A diadikus szorzat. Hatványozás Gyakorlati alkalmazások Készítette: Dr. Ábrahám

Részletesebben

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert

Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc. Dr. Kersner Róbert Fejezetek a lineáris algebrából PTE-PMMK, Műszaki Informatika Bsc Dr. Kersner Róbert 007 Tartalomjegyzék Előszó ii. Determináns. Mátrixok 6 3. Az inverz mátrix 9 4. Lineáris egyenletrendszerek 5. Lineáris

Részletesebben

2.2 Logisztorik (Gindilla Orsolya) 2012. szeptember 2.3 Barangolás a nagyotmondók földjén (Gindilla Orsolya) 3. Halmazelmélet

2.2 Logisztorik (Gindilla Orsolya) 2012. szeptember 2.3 Barangolás a nagyotmondók földjén (Gindilla Orsolya) 3. Halmazelmélet Tartalomjegyzék Az Ön könyve tartalmazza Tartalomjegyzék Szerzők Használati útmutató A megjelenés dátuma A GONDOLKODÁSI MÓDSZEREK 2. Logika 2.1 Képes sudoku kezdőknek (Tariné Berkes Judit Katalin) 2.2

Részletesebben

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét!

5. gyakorlat. Lineáris leképezések. Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! 5. gyakorlat Lineáris leképezések Tekintsük azt a valós függvényt, amely minden számhoz hozzárendeli az ötszörösét! f : IR IR, f(x) 5x Mit rendel hozzá ez a függvény két szám összegéhez? x, x IR, f(x +

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n

2. feladat Legyenek 1 k n rögzített egészek. Mennyi az. x 1 x 2...x k +x 2 x 3...x k+1 +...+x n k+1 x n k+2...x n Országos Középiskolai Tanulmányi Verseny, 2012 13-as tanév MATEMATIKA, III. kategória a gimnáziumok speciális matematikai osztályainak tanulói részére Az első forduló feladatainak megoldásai Kérjük a javító

Részletesebben

Témakörök az osztályozó vizsgához. Matematika

Témakörök az osztályozó vizsgához. Matematika Témakörök az osztályozó vizsgához Idegenforgalmi és Informatikus osztályok (9.A/9.B) 1. A halmazok, számhalmazok, ponthalmazok 2. Függvények 3. A számelmélet elemei. Hatványozás. 0 és negatív kitevőjű

Részletesebben

Feladatok és megoldások a 4. hétre

Feladatok és megoldások a 4. hétre Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint

Részletesebben

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja. 9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok

Részletesebben

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: - középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

19. Hasításos technikák (hash-elés)

19. Hasításos technikák (hash-elés) 19. Hasításos technikák (hash-elés) Példák: 1. Ha egy telefon előfizetőket a telefonszámaikkal azonosítjuk, mint kulcsokkal, akkor egy ritkán kitöltött kulcstartományhoz jutunk. A telefonszám tehát nem

Részletesebben

Analízis előadás és gyakorlat vázlat

Analízis előadás és gyakorlat vázlat Analízis előadás és gyakorlat vázlat Készült a PTE TTK GI szakos hallgatóinak Király Balázs 00-. I. Félév . fejezet Számhalmazok és tulajdonságaik.. Nevezetes számhalmazok ➀ a) jelölése: N b) elemei:

Részletesebben

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor

Bevezetés a számításelméletbe I. feladatgyűjtemény. Szeszlér Dávid, Wiener Gábor Bevezetés a számításelméletbe I. feladatgyűjtemény Szeszlér Dávid, Wiener Gábor Tartalomjegyzék Előszó 2 1. Feladatok 5 1.1. Térbeli koordinátageometria........................... 5 1.2. Vektortér, altér..................................

Részletesebben

Egyetemi matematika az iskolában

Egyetemi matematika az iskolában Matematikatanítási és Módszertani Központ Egyetemi matematika az iskolában Hegyvári Norbert 013 Tartalomjegyzék 1. Irracionális számok; 4. További irracionális számok 7 3. Végtelen tizedestörtek 7 4. Végtelen

Részletesebben

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a

Részletesebben

Komputer statisztika gyakorlatok

Komputer statisztika gyakorlatok Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Komputer statisztika gyakorlatok Eger, 2010. október 26. Tartalomjegyzék Előszó 4 Jelölések 5 1. Mintagenerálás 7 1.1. Egyenletes

Részletesebben

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK

LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Írta: LEITOLD ADRIEN LINEÁRIS ALGEBRA PÉLDATÁR MÉRNÖK INFORMATIKUSOKNAK Egyetemi tananyag COPYRIGHT: Dr. Leitold Adrien Pannon Egyetem Műszaki Informatika Kar Matematika Tanszék LEKTORÁLTA: Dr. Buzáné

Részletesebben

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint TÁMOP-.1.4-08/2-2009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint Vasvár,

Részletesebben

Matematikai programozás gyakorlatok

Matematikai programozás gyakorlatok VÁRTERÉSZ MAGDA Matematikai programozás gyakorlatok 2003/04-es tanév 1. félév Tartalomjegyzék 1. Számrendszerek 3 1.1. Javasolt órai feladat.............................. 3 1.2. Javasolt házi feladatok.............................

Részletesebben

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal

Mátrixok. 3. fejezet. 3.1. Bevezetés: műveletek táblázatokkal fejezet Mátrixok Az előző fejezetben a mátrixokat csak egyszerű jelölésnek tekintettük, mely az egyenletrendszer együtthatóinak tárolására, és az egyenletrendszer megoldása közbeni számítások egyszerüsítésére

Részletesebben

Széchenyi István Egyetem, 2005

Széchenyi István Egyetem, 2005 Gáspár Csaba, Molnárka Győző Lineáris algebra és többváltozós függvények Széchenyi István Egyetem, 25 Vektorterek Ebben a fejezetben a geometriai vektorfogalom ( irányított szakasz ) erős általánosítását

Részletesebben

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás

Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás 12. évfolyam Osztályozó vizsga 2013. augusztus Számsorozatok Sorozat fogalma, példák sorozatokra, rekurzív sorozatokra, sorozat megadása Számtani sorozat Mértani sorozat Kamatszámítás Ismerje a számsorozat

Részletesebben

Diszkrét Matematika I.

Diszkrét Matematika I. Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár Bácsó Sándor Diszkrét Matematika I. mobidiák könyvtár SOROZATSZERKESZTŐ Fazekas István Bácsó Sándor Diszkrét Matematika I. egyetemi jegyzet mobidiák

Részletesebben

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február Helyi tanterv Batthyány Kázmér Gimnázium Matematika emelt (5+6+6+6 óra/hét) 9-12 évfolyam Készült: 2013 február 1 A TANTERV SZERKEZETE Bevezető Célok és feladatok Fejlesztési célok és kompetenciák Helyes

Részletesebben

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész

Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 2005. november. I. rész Pataki János, 005. november Középszintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: 005. november I. rész. feladat Egy liter 0%-os alkoholhoz / liter 40%-os alkoholt keverünk.

Részletesebben

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MATEMATIKA 9. osztály Segédanyag 4 óra/hét MATEMATIKA 9. osztály Segédanyag 4 óra/hét - 1 - Az óraszámok az AROMOBAN követhetőek nyomon! A tananyag feldolgozása a SOKSZÍNŰ MATEMATIKA (Mozaik, 013) tankönyv és a SOKSZÍNŰ MATEMATIKA FELADATGYŰJTEMÉNY

Részletesebben

Vektorszámítás Fizika tanárszak I. évfolyam

Vektorszámítás Fizika tanárszak I. évfolyam Vektorszámítás Fizika tanárszak I. évfolyam Lengyel Krisztián TARTALOMJEGYZÉK Tartalomjegyzék. Deriválás.. Elmélet........................................... Deriválási szabályok..................................

Részletesebben

Dekonvolúció, Spike dekonvolúció. Konvolúciós föld model

Dekonvolúció, Spike dekonvolúció. Konvolúciós föld model Dekonvolúció, Spike dekonvolúció Konvolúciós föld model A szeizmikus hullám által átjárt teret szeretnénk modelezni A földet úgy képzeljük el, mint vízszintes rétegekből álló szűrő rendszert Bele engedünk

Részletesebben

matematikai statisztika 2006. október 24.

matematikai statisztika 2006. október 24. Valószínűségszámítás és matematikai statisztika 2006. október 24. ii Tartalomjegyzék I. Valószínűségszámítás 1 1. Véletlen jelenségek matematikai modellje 3 1.1. Valószínűségi mező..............................

Részletesebben

Tómács Tibor. Matematikai statisztika

Tómács Tibor. Matematikai statisztika Tómács Tibor Matematikai statisztika Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Matematikai statisztika Eger, 01 Szerző: Dr. Tómács Tibor főiskolai docens Eszterházy Károly

Részletesebben

RAKTÁROZÁSI ÉS KISZOLGÁLÁSI PROBLÉMÁK MATEMATIKAI MODELLEZÉSE

RAKTÁROZÁSI ÉS KISZOLGÁLÁSI PROBLÉMÁK MATEMATIKAI MODELLEZÉSE RAKTÁROZÁSI ÉS KISZOLGÁLÁSI PROBLÉMÁK MATEMATIKAI MODELLEZÉSE Jegyzet Készítette: Sztrik János Debreceni Egyetem Informatikai Kar Debrecen, 2004. Lektorálta: Dr. Fazekas Gábor egyetemi docens Tartalomjegyzék.

Részletesebben

Iránymérés adaptív antennarendszerrel

Iránymérés adaptív antennarendszerrel Iránymérés adaptív antennarendszerrel NÉMETH ANDRÁS ZMNE-BJKMFK, Katonai Távközlési és Telematikai Tanszék, anemeth@bjkmf.hu FOLKMANN VIKTOR Bonn Hungary Electronics Kft. folkmannv@freemail.hu Kulcsszavak:

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 6. MA3-6 modul. A statisztika alapfogalmai Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 6. MA3-6 modul A statisztika alapfogalmai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999.

Részletesebben

Differenciálegyenletek a hétköznapokban

Differenciálegyenletek a hétköznapokban Differenciálegyenletek a hétköznapokban BSc Szakdolgozat Írta: Gondos Réka Matematika BSc, alkalmazott matematikus szakirány Témavezető: Besenyei Ádám adjunktus Alkalmazott Analízis és Számításmatematikai

Részletesebben

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Fénytan 1 Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből) Feladatok F. 1. Vízszintes asztallapra fektetünk egy negyedhenger alakú üvegtömböt, amelynek függőlegesen álló síklapját

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

Véletlenszám generátorok

Véletlenszám generátorok Véletlenszám generátorok Bevezetés Nincs elfogadott megközelítése a témának Alapvetően 2 fajta generátor: Szoftveres Hardveres Egyik legjobb szoftveres generátor: Mersenne Twister 2^19937 1 periódusú,

Részletesebben

Fogaskerék hajtások I. alapfogalmak

Fogaskerék hajtások I. alapfogalmak Fogaskeék hajtások I. alapfogalmak A fogaskeekek csopotosítása A fogaskeékhajtást az embeiség évszázadok óta használja. A fogazatok geometiája má a 8-9. században kialakult, de a geometiai és sziládsági

Részletesebben

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok

JANUS PANNONIUS TUDOMÁNYEGYETEM. Schipp Ferenc ANALÍZIS I. Sorozatok és sorok JANUS PANNONIUS TUDOMÁNYEGYETEM Schipp Ferenc ANALÍZIS I. Sorozatok és sorok Pécs, 1994 Lektorok: Dr. FEHÉR JÁNOS egyetemi docens, kandidtus. Dr. SIMON PÉTER egyetemi docens, kandidtus 1 Előszó Ez a jegyzet

Részletesebben

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A vizsga formája Középszinten: írásbeli. Emelt szinten: írásbeli és szóbeli. MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI A matematika érettségi vizsga célja A matematika érettségi vizsga célja

Részletesebben

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.)

Lineáris algebra I. Kovács Zoltán. Előadásvázlat (2006. február 22.) Lineáris algebra I. Kovács Zoltán Előadásvázlat (2006. február 22.) 2 3 Erdős Jenő emlékének. 4 Tartalomjegyzék 1. A szabadvektorok vektortere 7 1. Szabadvektorok összeadása és skalárral való szorzása...............

Részletesebben

Valószín ségelmélet házi feladatok

Valószín ségelmélet házi feladatok Valószín ségelmélet házi feladatok Minden héten 3-4 házi feladatot adok ki. A megoldásokat a következ órán kell beadni, és kés bb már nem lehet pótolni. Csak az mehet vizsgázni, aki a 13 hét során kiadott

Részletesebben

TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255

TARTALOM. Ismétlő tesztek...248 ÚTMUTATÁSOK ÉS EREDMÉNYEK...255 TARTALOM. SZÁMHALMAZOK...5.. Természetes kitevőjű hatványok...5.. Negatív egész kitevőjű hatványok...6.. Racionális kitevőjű hatványok...7.4. Irracionális kitevőjű hatványok...0.5. Négyzetgyök és köbgyök...

Részletesebben

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra) MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,

Részletesebben

Szeminárium-Rekurziók

Szeminárium-Rekurziók 1 Szeminárium-Rekurziók 1.1. A sorozat fogalma Számsorozatot kapunk, ha pozitív egész számok mindegyikéhez egyértelműen hozzárendelünk egy valós számot. Tehát a számsorozat olyan függvény, amelynek az

Részletesebben

SZÁMOLÁSTECHNIKAI ISMERETEK

SZÁMOLÁSTECHNIKAI ISMERETEK SZÁMOLÁSTECHNIKAI ISMERETEK Műveletek szögekkel Geodéziai számításaink során gyakran fogunk szögekkel dolgozni. Az egyszerűbb írásmód kedvéért ilyenkor a fok ( o ), perc (, ), másodperc (,, ) jelét el

Részletesebben

Teszt kérdések. Az R n vektortér

Teszt kérdések. Az R n vektortér Teszt kérdések Döntse el az alábbi állításokról, hogy igazak agy hamisak! Az R tér geometriája 1. Ha két térbeli egyenesnek nincs közös pontja, akkor párhuzamosak.. Egy térbeli egyenest egyértelműen meghatározza

Részletesebben

Mátrixok és determinánsok

Mátrixok és determinánsok Informtik lpji Mátriok és erminánsok számok egyfjt tábláztát mátrink hívjuk. mátriok hsználhtóság igen sokrétő kezdve mtemtikávl, folyttv számítástechnikán és fizikán keresztül, egészen z elektrotechnikáig.

Részletesebben

ESR színképek értékelése és molekulaszerkezeti értelmezése

ESR színképek értékelése és molekulaszerkezeti értelmezése ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 11 XI LINEÁRIS EGYENLETRENDSZEREk 1 LINEÁRIS EGYENLETRENDSZER A lineáris egyenletrendszer általános alakja: (1) Ugyanez mátrix alakban: (2), ahol x az ismeretleneket tartalmazó

Részletesebben

Analízisfeladat-gyűjtemény IV.

Analízisfeladat-gyűjtemény IV. Oktatási segédanyag a Programtervező matematikus szak Analízis. című tantárgyához (003 004. tanév tavaszi félév) Analízisfeladat-gyűjtemény IV. (Függvények határértéke és folytonossága) Összeállította

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 113 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Formai előírások: Fontos tudnivalók

Részletesebben

Juhász Tibor. Lineáris algebra

Juhász Tibor. Lineáris algebra Juhász Tibor Lineáris algebra Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Juhász Tibor Lineáris algebra Eger, 2013 Készült a TÁMOP-425B-11/1-2011-0001 támogatásával Tartalomjegyzék

Részletesebben

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke? 5. Trigonometria I. Feladatok 1. Mutassuk meg, hogy cos 0 cos 0 sin 0 3. KöMaL 010/október; C. 108.. Az ABC háromszög belsejében lévő P pontra PAB PBC PCA φ. Mutassuk meg, hogy ha a háromszög szögei α,

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó

NUMERIKUS MÓDSZEREK FARAGÓ ISTVÁN HORVÁTH RÓBERT. Ismertető Tartalomjegyzék Pályázati támogatás Gondozó FARAGÓ ISTVÁN HORVÁTH RÓBERT NUMERIKUS MÓDSZEREK 2011 Ismertető Tartalomjegyzék Pályázati támogatás Gondozó Szakmai vezető Lektor Technikai szerkesztő Copyright Az Olvasó most egy egyetemi jegyzetet tart

Részletesebben

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások:

A gyakorlatok HF-inak megoldása Az 1. gyakorlat HF-inak megoldása. 1. Tagadások: . Tagadások: A gyakorlatok HF-inak megoldása Az. gyakorlat HF-inak megoldása "Nem észak felé kell indulnunk és nem kell visszafordulnunk." "Nem esik az es, vagy nem fúj a szél." "Van olyan puha szilva,

Részletesebben

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat

NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat NT-17102 Matematika 9. (Heuréka) Tanmenetjavaslat Ezzel a segédanyaggal szeretnék segítséget nyújtani a középiskolák azon matematikatanárainak, akik a matematikai oktatáshoz és neveléshez Dr. Fried Katalin

Részletesebben

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x = 2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög

Részletesebben

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam

Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az

Részletesebben

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK

Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Dr. Kuczmann Miklós JELEK ÉS RENDSZEREK Z UNIVERSITAS-GYŐR Kht. Győr, 25 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR TÁVKÖZLÉSI TANSZÉK Egyetemi jegyzet Írta:

Részletesebben

2. Interpolációs görbetervezés

2. Interpolációs görbetervezés 2. Interpolációs görbetervezés Gondoljunk arra, hogy egy grafikus tervező húz egy vonalat (szabadformájú görbét), ezt a vonalat nekünk számítógép által feldolgozhatóvá kell tennünk. Ennek egyik módja,

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:

Részletesebben

összeadjuk 0-t kapunk. Képletben:

összeadjuk 0-t kapunk. Képletben: 814 A ferde kifejtés tétele Ha egy determináns valamely sorának elemeit egy másik sor elemeihez tartozó adjungáltakkal szorozzuk meg és a szorzatokat összeadjuk 0-t kapunk Képletben: n a ij A kj = 0, ha

Részletesebben

Kombinatorikus kerese si proble ma k

Kombinatorikus kerese si proble ma k Eo tvo s Lora nd Tudoma nyegyetem Terme szettudoma nyi Kar Lenger Da niel Antal Matematikus MSc Kombinatorikus kerese si proble ma k Szakdolgozat Te mavezeto : Katona Gyula egyetemi tana r Sza mı to ge

Részletesebben

Ferde fényképezés. Szalkai István Pannon Egyetem, Veszprém, szalkai@almos.uni-pannon.hu. June 18, 2015

Ferde fényképezés. Szalkai István Pannon Egyetem, Veszprém, szalkai@almos.uni-pannon.hu. June 18, 2015 Ferde fényképezés Szalkai István Pannon Egyetem, Veszprém, szalkai@almos.uni-pannon.hu June 18, 2015 Haladvány Kiadvány, 2015. http://www.math.bme.hu/~hujter/halad.htm/150619.pdf Legtöbbször nem tudjuk

Részletesebben

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.)

Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Mesterséges intelligencia, 7. előadás 2008. október 13. Készítette: Masa Tibor (KPM V.) Bizonytalanságkezelés: Az eddig vizsgáltakhoz képest teljesen más világ. A korábbi problémák nagy része logikai,

Részletesebben

Matematika. Specializáció. 11 12. évfolyam

Matematika. Specializáció. 11 12. évfolyam Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes

Részletesebben

Nemzetközi Magyar Matematikaverseny 2016

Nemzetközi Magyar Matematikaverseny 2016 Nemzetközi Magyar Matematikaverseny 2016 2016 Fazekas, Berzsenyi Budapest Berzsenyi Dániel Gimnázium Fazekas Mihály Gimnázium Budapest 2. javított kiadás 2016. március 1115. Technikai el készítés, tördelés:

Részletesebben

Bevezetés 3. Vizsga tételsor 5. 1 Komplex számok 6. 2 Lineáris algebra 10. 2.2Vektorterek 11

Bevezetés 3. Vizsga tételsor 5. 1 Komplex számok 6. 2 Lineáris algebra 10. 2.2Vektorterek 11 Bevezetés a számításelméletbe 1. A BME I. éves mérnök-informatikus hallgatói számára segédlet a 2007. őszi előadáshoz Összeállította: Fleiner Tamás Utolsó frissítés: 2010. január 13. Tartalomjegyzék Bevezetés

Részletesebben

GÉPÉSZETI ÉS AUTOMATIZÁLÁSI MÉRÉSEK

GÉPÉSZETI ÉS AUTOMATIZÁLÁSI MÉRÉSEK GÉPÉSZETI ÉS AUTOMATIZÁLÁSI MÉRÉSEK Környezetvédelmi technikus tanulók részére Ez a tankönyvpótló jegyzet a Petrik Lajos Két Tanítási Nyelvű Vegyipari, Környezetvédelmi és Informatikai Szakközépiskola

Részletesebben

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18

Komplex számok. Wettl Ferenc előadása alapján Wettl Ferenc előadása alapján Komplex számok / 18 Komplex számok Wettl Ferenc előadása alapján 2015.09.23. Wettl Ferenc előadása alapján Komplex számok 2015.09.23. 1 / 18 Tartalom 1 Számok A számfogalom bővülése 2 Algebrai alak Trigonometrikus alak Egységgyökök

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Geometriai példatár 2.

Geometriai példatár 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Baboss Csaba Szabó Gábor Geometriai példatár 2 GEM2 modul Metrikus feladatok SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999 évi

Részletesebben

Egy irányított szakasz egyértelműen meghatároz egy vektort.

Egy irányított szakasz egyértelműen meghatároz egy vektort. VEKTOROK VEKTOROK FOGALMA Ha egy szakasz két végpontját megkülönböztetjük egymástól oly módon, hogy az egyik pont a kezdőpont, a másik pont a végpont, akkor irányított szakaszt kapunk. Egy irányított szakasz

Részletesebben

Matematika emelt szint a 11-12.évfolyam számára

Matematika emelt szint a 11-12.évfolyam számára Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka

Részletesebben

Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees

Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees Color profile: Generic CMYK printer profile Composite 150 lpi at 45 degrees Matematikai Lapo / Borító 2013. december 13. 19:28:39 13-1-borito 2014/5/20 11:55 page 0 #1 MATEMATIKAI LAPOK A Bolyai János

Részletesebben