Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Környezetmérnöki Tanszék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Környezetmérnöki Tanszék"

Átírás

1 Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Környezetmérnöki Tanszék H-7624 Pécs, Boszorkány út 2. Tel/Fax: 72/50-650/965 SZENNYVÍZTISZTÍTÁS ÜLEPÍTÉS ÉS BIOLÓGIAI MŰVELETEK (Oktatási segédanyag) Készítette: Dittrich Ernő egyetemi adjunktus

2 TARTALOMJEGYZÉK TARTALOMJEGYZÉK 2 1. Homokfogók Homokfogók célja, feladata, típusai Hosszanti átfolyású homokfogók Kialakításuk Hidraulikai méretezés, példák Függőleges átfolyású homokfogók Kialakításuk Méretezésük, példák: Levegőztetett homokfogók Kialakításuk: Hidraulikai méretezés, példák: Ülepítők Ülepítők célja, feladata, típusai Az ülepítők méretezése Felületi hidraulikai terhelés: A tartózkodási idő, és a műtárgy térfogata A felületi LA terhelés Átfolyási sebességek Bukó-él hidraulikai ellenőrzése Előülepítő iszapzsompjának méretezése Utóülepítő iszapzsompjának egyszerűsített méretezése Vízszintes hosszanti átfolyású ülepítők Kialakításuk Méretezés, példák Vízszintes sugárirányú átfolyású ülepítő Kialakítás Méretezés, példák Függőleges sugárirányú átfolyású ülepítők Kialakítás Méretezés, példák 24. Biológiai szennyvíztisztítási alapok Eleveniszapos levegőztető medencék Kialakítás Méretezés, példák Csepegtető testes biológiai tisztítók Kialakítás Méretezés, példák 7.. Merülő-tárcsás biológiai tisztítók Kialakítás Méretezés, példák 40 Felhasznált források 4 MELLÉKLETEK melléklet: A víz telített folyadék és száraz telített gőz állapotának dinamikus viszkozitás és hővezetési értékei a telítési hőmérséklet függvényében (Vesztergom, 1994) 45 2

3 . melléklet: Ülepítők vízelvezetési megoldásai a vonatkozó vízhozam képletekkel 46. melléklet: Homokfogók üzemelési zavarai melléklet: Ülepítők üzemelési zavarai melléklet: További ülepítő típusok vázrajzai melléklet: Eleveniszapos levegőztető medence tervezési paraméterei az MI /5-84 alapján 50

4 1. Homokfogók 1.1. Homokfogók célja, feladata, típusai A homokfogók általában szennyvíztisztításban alkalmazott létesítmények. Ritkán előfordulhat más technológiák létesítményei között is (pl. ipari felszíni vízkivételi művek, kocsi-mosók, stb.). Feladatuk az önmagukban ülepedő-képes szervetlen anyagok (homok, salak, stb.) kiülepítése. A hagyományos szennyvíztisztítási technológiai sorban a homokfogó, a rács, és az előülepítő között helyezkedik el. A homok leválasztása a tisztítási technológiák elején több szempontból is fontos: - A szennyvízben levő zsír, kátrány és egyéb cementálódó tulajdonságú anyagokból a szilárd ásványi anyagokkal keveredve nehezen eltávolítható lerakódások keletkeznek. - A szilárd anyagok a rendszerben lévő szivattyúkat nagymértékben koptatják - A homoktartalmú iszap kivétele gépészetileg nehézkes, és számos üzemeltetési problémát okoz az iszapkivételi rendszerben. 1. ábra: Homokfogók elhelyezkedése, hagyományos szennyvíz-technológiai sorrend esetén (Öllős, 1992) A homokfogók működési elve, hogy az áramlási sebesség a műtárgyban 0, m/s alá csökkentjük. Ilyen sebesség alatt a 0,1 mm feletti szemcseméretű ásványi anyagokat a víz már nem képes tartósan mozgásban tartani. Homokfogók főbb típusai: - Hosszanti átfolyású homokfogók Előnyük hogy nagyon kedvező leválasztási hatásfok (ásványi anyagok 90 %-a) érhető el ezzel a típussal, méretezése egyszerű. Hátránya, a nagy hosszirányú kiterjedés (0-90 m) - Függőleges átfolyású homokfogók Előnyük hogy kisebb kiterjedésű műtárgyak, azonban kisebb a leválasztásai hatásfoka. 4

5 - Tangenciális homokfogók A függőleges átfolyású homokfogóéval hasonló hatásfokú. Viszonylag ritkán alkalmazzák. Betonból a kialakítása körülményes, ezért olyan telepméreteknél jöhet szóba az alkalmazása, ahol az acélból való kivitelezés még gazdaságos lehet. - Levegőztetett homokfogók Előnye, hogy a szennyvíz előlevegőztetését, frissítését is elvégzi. Erre leggyakrabban akkor van szükség, ha a szennyvízcsatorna hálózatban a tartózkodási idő meghaladja a 6 órát, és berothad. A hosszanti átfolyású homokfogókénál is nagyobb leválasztási hatásfok érhető el. A felsorolt főtípusokon kívül számos egyéb típus kapható előre-gyártott kivitelben, és számos egyedi változat kialakítható a tervezés során Hosszanti átfolyású homokfogók Kialakításuk A kialakítás tervezése során az alábbi fő szempontokra kell törekedni (MI /4-1984; MSZ EN ): - a szennyvíz bevezetését úgy kell megoldani, hogy annak energiáját megtörje - a homokfogó keresztszelvénye mentén minél egyenletesebb sebesség eloszlás alakuljon ki - a műtárgy általában nyitott legyen - a műtárgy kiiktathatóságának érdekében, a befolyási és az elfolyási oldalon, tolózár, vagy zsilipek kialakítása szükséges - tisztítást ma már csak gépi úton végzik - az ingadozó vízhozam kedvezőtlen hidraulikai hatásait a lehető legnagyobb mértékben kiküszöbölje (általában több homokfogót párhuzamosan kapcsolunk) 2. ábra: A homokfogók szakaszolhatóságának kialakítása (Öllős, 1992) 5

6 Hidraulikai méretezés, példák példa: Hosszanti átfolyású homokfogók fő méreteinek meghatározása Határozzuk meg egy hosszanti átfolyású homokfogó főbb méreteit, az alábbi adatok ismeretében: - A leválasztandó minimális szemcseméret: d=0,1 mm (finomhomok) - A maximális áramlási sebesség: v=0, m/s - Az érkező szennyvíz mértékadó hozama: Q max =240 l/s - Az érkező szennyvíz sűrűsége: ρ sz =1000 kg/m - Az érkező szennyvíz hozama jelentősen ingadozik - Az elvárt leválasztási hatásfok: η=95 % - Elválasztott rendszerű csatornáról érkezik a szennyvíz Kezdeti feltételezések: - az ülepedés lamináris tartományba esik - az áramlás permanens - az ülepedési sebesség állandó - a vízszintes irányú sebesség a műtárgyban egyenletes Az érkező szennyvíz ingadozása miatt, célszerű több párhuzamos homokfogó betervezése. Ez üzemelési szempontból is előnyös, mert az éppen üzemen kívül levő műtárgy tisztítható. Esetünkben db párhuzamos műtárgy kerül betervezésre. Így a műtárgyankénti csúcshozam: Q m =80 l/s=288 m /h=0,08 m /s. Kiválasztandó, a mértékadó szemcse átmérőhöz tartozó ülepedési sebesség az alábbi táblázatból. Mely esetünkben: v ü = 24 m/h. Ülepedési sebesség [m/h] Anyag Sürűség Szemcseátmérő [mm] [t/m] 0,1 0,2 0,5 1 kvarchomok 2, szén 1, lebegőanyag 1, táblázat: különböző anyagok ülepedési sebessége ( v ü ), 10 C-os álló kommunális szennyvízben, szemcseátmérők szerint (MI /4-1984) Ez az ülepedési sebesség állóvízre vonatkozik, így a korrigálni kell a vízszintes irányú áramlásból adódóan. Az alkalmazandó, α korrekciós tényező az alábbi táblázatból egyszerűen meghatározható. Így v a =v ü /α= 24/4,2=5,7 m/h 6

7 A homokfogó ülepítési hatásfoka [%] táblázat: Hazen-féle ülepedési korrekciós tényező (α ) a szemcseátmérő és a leválasztási hatásfok alapján (MI /4-1984) A homokfogó felületének meghatározása: A=Q m /v a =288/5,7=50,5 m 2 Ülepedési korrekciós tényező [ - ] A homokfogó hasznos mélysége (ebben nincs benne a kiülepedett homok tárolására szolgáló tér mélysége) megválasztandó. Általában: H=0,25-0,8 m. Esetünkben legyen: 0,4 m. Így a homokfogó szélessége: B=Q m /v*h=0,08/0,*0,4=0,66 m A homokfogó hasznos hossza: L=A/B=50,5/0,66=75 m Szemcseátmérő [mm] 0,1 0,2 0,5 1,0 5,6 4,0 2,5 2,5 4,2,0 1,8 1,8,5 2,4 1,6 1,6 2,8 1,9 1,2 1,2 A kapott eredményeket ellenőrizni kell. Az ellenőrzés alapelve, hogy a korrigált ülepedési sebességből számított ülepedési idő, és a hosszirányú áramlási sebességből számított tartózkodási idő értékei közel azonosnak kell, hogy legyenek. Megfelelő méretezés esetén a hosszirányú sebességből számított tartózkodási időnek kismértékben kell nagyobbnak lennie, mint az ülepedési időnek. H 0,4 Az ülepedési idő: τ ü = = = 0,07óra = 4, 2 perc v 5,7 a A hosszirányú sebességből számított tartózkodási idő: Mivel: τ ü τ, a műtárgy főméretei megfelelőek! τ = L v = 75 0, = 250s = 4,2 perc A homok tároló rész magassága: Tapasztalatai értékek a szennyvízből leválasztott homok mennyiségére (MI /4-1984): - Elválasztott csatornarendszer esetén: 0,07-0,2 l/m - Egyesített csatornarendszer esetén: 0,6-0,5 l/m Esetünkben az elválasztott csatornarendszerből származó szennyvíz maximum értékét feltételezve a várhatóan leválasztott homok mennyisége: 0,2 l/m Maximum naponta történik a műtárgy tisztítása, így a tározandó leválasztott homok mennyiség: V h =0,2*24*288*=4147=4,2 m. A homokréteg átlagos magassága: H(h)= V h /A=4,2/50,5=0,08 m. Az egyszerűbb homokkivétel érdekében a homokgyűjtő teret vályúszerűen alakítják ki. 7

8 A műtárgy mélységének (H t ) a meghatározása: H t =H h +H+0,25m= 0,8 m (kerekítve), ahol 0,25 m a kiöntési biztonság példa: Hőmérséklet hatásának vizsgálata Az előző példában bemutatott MI /4-84 szerinti méretezés 10 C-os hőmérsékletű szennyvizet vesz alapul. Vizsgáljuk meg, hogy a hőmérséklet alakulása milyen hatással van, az előzőekben kiszámított homokfogó működésére, ha az éves üzemelési periódusra feltételezzük, hogy az érkező szennyvíz maximális hőmérséklete 0 C, minimális hőmérséklete pedig 5 C (Kucsera, 1995). Lamináris tartományt feltételezve, a 0,1 mm átmérőjű gömb-alakú homokszemcse ülepedési sebessége: v ü 2 d ρ = g 18 η Ahol: - d: az ülepedő szemcse átmérője [m] - ρ: a homokszemcse és a víz sűrűségének különbsége ( ) [kg/m ] - η: a szennyvíz dinamikai viszkozitása [kg/m*s] Ha a szennyvíz sűrűségének a változását elhanyagoljuk, akkor jól látható, hogy az ülepedési sebesség számításánál az egyetlen hőmérsékletfüggő tag a dinamikai viszkozitás. Az 1. sz. melléklet alapján a vizsgált hőmérsékleti szélsőértékekhez tartozó dinamikai viszkozitás értékek: η 5 =1525*10-6 kg/m*s η 0 =797*10-6 kg/m*s Így a minimális illetve a maximális hőmérséklethez tartozó ülepedési sebességek: v 5 =(0,1*10 - ) 2 *1650*9,81/18*1525*10-6 =0,0059 m/s=21,2 m/h v 0 = (0,1*10 - ) 2 *1650*9,81/18*797*10-6 =0,011 m/s=40,6 m/h Az előző feladatban 10 C-on méretezett homokfogót 95%-os leválasztási hatásfokra méreteztük. Könnyen belátható, hogy a leválasztási hatásfok egyenesen arányos, az ülepedési sebességgel, így: - A 5 C-hoz tartozó leválasztási hatásfok: 95*21,2/24=84%-ra csökken. - A 0 C-hoz tartozó leválasztási hatásfok: 95*40,6/24=161%, tehát a 0,1 mm-nél kisebb szemcséket is képes 100%-os hatásfokkal leválasztani. 1.. Függőleges átfolyású homokfogók Ajánlott alkalmazási tartomány: Q=4000 m /nap szennyvízhozam felett, illetve minden olyan esetben ahol a helyhiány nem teszi lehetővé hosszanti átfolyású homokfogó telepítését. 8

9 1..1. Kialakításuk A kialakítás során az alábbi szempontokra kell figyelemmel lenni (MI /4-1984; MSZ EN ): - A szennyvíz bevezetését szolgáló csillapító hengerben az áramlási sebesség 0,5-1 m/s legyen. Egyszerű merülő-falas kialakítás esetén az áramlási sebességet 0, m/s értékűre kell beállítani. - A vizet a középen elhelyezett hengeren keresztül (csillapító henger) kell bevezetni, és a peremen körbefutó bukó-élen át kell elvezetni. - A csillapító henger minimális hossza: m - A homok gyűjtésére szolgáló tér fenékhajlása minimálisan 1:1,6 legyen - A homok kiemelése zagyszivattyúval vagy homokkihordó csigával történik. A tömörödés elkerülése érdekében, a tölcsérszerű gyűjtő zsompban légbefúvást és nyomás alatti vízzel történő fellazításhoz csőrendszert kell biztosítani. Homokkihordó csiga alkalmazása esetén nem szükséges a homok fellazításának biztosítása Méretezésük, példák: példa: Függőleges átfolyású homokfogó főméreteinek meghatározása Határozzuk meg az alábbi kiindulási adatok ismeretében a függőleges átfolyású homokfogó fő méreteit: - A műtárgyra érkező mértékadó szennyvízhozam értéke: Q m =600 m/h - A leválasztandó minimális szemcseméret: d=0,2 mm (finomhomok) - Az érkező szennyvíz sűrűsége: ρ sz =1000 kg/m - Elválasztott rendszerű csatornáról érkezik a szennyvíz Kezdeti feltételezések: - az ülepedés lamináris tartományba esik - az áramlás permanens - az ülepedési sebesség állandó A 10 C hőmérsékletű szennyvízben a mértékadó szemcse, ülepedési sebessége: (1-es táblázatból) v ü =82 m/h. (Itt a függőleges áramlási irány miatt α-val nem kell korrigálni az ülepedési sebességet.) Így a műtárgy szükséges hasznos felülete: A=Q m /v ü =600/82=7,1 m2 A bevezető csillapító henger keresztmetszete 0,5 m/s sebesség figyelembe vételével: A csillapító henger átmérője: A Q = v 600 = 0,5*600 m cs = cs 0,m 2 Dcs = 4* Acs / π 0, 6m 9

10 A műtárgy hasznos felülete a csillapító henger felületével növelendő. Így a kör keresztmetszetű műtárgy átmérője: D = 4*( A + Acs ) / π, 2m A függőleges csillapító henger hossza: m. A tölcsérszerű gyűjtő tér meredeksége: 1:1,6, a fenék átmérője: 0,5 m. A csillapító henger és a gyűjtőzsomp teteje között 0,5 m távolságot tartva, a műtárgy mélysége: H=+(-0,5)/2*1,6+0,5=5,5 m 1.4. Levegőztetett homokfogók Kialakításuk: A műtárgy kialakításának főbb szempontjai lenni (MI /4-1984): - A keresztszelvényi kialakításnál, legfőbb szempont, hogy a légbefúvás és a hosszirányú áramlás együttes hatásaként a szennyvíz zavartalan csavarvonalú áramlása kialakulhasson. Tapasztalat szerint erre leginkább alkalmas, a 4:-as magasság:szélesség arányú kialakítás, melyet a fenék közelében célszerű lekerekíteni. - A homokgyűjtő vályút célszerű a befúvás oldalán, a teljes fenék-szélesség 1/-án belül kialakítani, melynek szélessége a medence szélesség 10 %-a. - A szennyvíz elvezetése a műtárgy végén kialakítandó bukóél segítségével történik Hidraulikai méretezés, példák: feladat: Levegőzetett homokfogó főméreteinek meghatározása Határozzuk meg az alábbi adatok ismeretében, egy levegőztetett homokfogó fő méreteit, valamint becsüljük meg a levegőztetés várható energia igényét: - a műtárgyra érkező szennyvízhozam csúcs értéke: Q m =2000 m /h=, m /perc=0,56 m /s - A leválasztandó minimális szemcseméret: d=0,2 mm (finomhomok) - Az érkező szennyvíz sűrűsége: ρ sz =1000 kg/m - Az elvárt leválasztási hatásfok: η=90 % - Elválasztott rendszerű csatornáról érkezik a szennyvíz - A műtárgynak csak leválasztási funkciója van. 10

11 .ábra: levegőztetett homokfogók keresztmetszeti kialakítása (MI /4-1984) Méretezés alapértékei lenni (MI /4-1984): - a vízszintes irányú áramlási sebesség: v=0,15 m/s - a csavarvonal menti áramlási sebesség: v cs =0, m/s - a megfelelő mértékű csavarvonal alakú áramlási viszonyok eléréséhez közelítőleg 1-2,5 m/h*medence térfogat fajlagos levegőmennyiség szükséges. A pillanatnyi szennyvízhozamtól és a műtárgy jellemzőitől függően ez beállítható. - Az ajánlott tartózkodási idő a műtárgyban T=2-10 perc. Ez az érték akkor jelentősen növelhető, ha a műtárgynak előlevegőztetési funkciója is van. A szükséges tartózkodási időket az alábbi táblázat szemlélteti: Tartózkodási idő [s] Szemcsátmérő [mm] A homokfogó leválasztási hatásfoka [%] ,125-0, ,160-0, ,200-0, ,250-0, ,15-0, táblázat: a szükséges tartózkodási idők levegőztetett homokfogóban (Dulovics, 1997). A -as táblázat alapján a tartózkodási idő: t=7 perc. A medence térfogata: V=Q m *t=,*7=2 m A medence hasznos keresztmetszete: A v =Q m /v=0,56/0,15=,7 m 2 (Ehhez még hozzá jön a homok-gyűjtő vályú) A medence hasznos hossza: L=V/A v =6 m A keresztmetszet kialakítása, 4: oldalarányú kialakítás esetén: A v = a*b=a*4/a=4/a 2. Így A fenékszélesség: a=1,6 m A hasznos mélység: b=2, m 11

12 A szükséges levegő mennyisége: 2-58 m/h (normál állapotban) A várható energia igényt az alábbi táblázatból lehet becsülni lenni Levegőztetett homokfogók fajlagos energiaszükséglete A műtárgy hasznos keresztmetszete [m2] Fajlagos energiaszükséglet [Wh/műtárgym] táblázat: a levegőztetett homokfogók fajlagos energia szükséglete (MI /4-1984) Tehát esetünkben (4 m2-el számolva) a várható energiaszükséglet: 2m *12Wh/m =2796 V h. 12

13 2. Ülepítők 2.1. Ülepítők célja, feladata, típusai Az ülepítőkben a homokfogóknál is kisebb áramlási sebességek uralkodnak. Így minden a víznél nagyobb fajsúlyú anyag a fenékre ülepszik. Az ülepítőkben végbe megy a flotáció folyamata is, azaz a víznél kisebb fajsúlyú anyagok felúsznak. A hosszabb tartózkodási idő miatt lehetőség van a pelyhesedésre hajlamos anyagok kiülepítésére is (Öllős, 1992). Az ülepítők fő alkalmazási területei: - önálló mechanikai tisztító berendezésként - öntözés előtti előtisztításhoz - biológiai rendszerű szennyvíztisztító telep elő és utóülepítőjeként - kémiai tisztító rendszer elő és utóülepítőjeként Az ülepítők leggyakoribb típusai: - vízszintes hosszanti átfolyású ülepítő - vízszintes sugárirányú átfolyású ülepítő - függőleges átfolyású tölcséres ülepítő - kétszintes ülepítő - lemezes ülepítő A továbbiakban csak az első három főtípust tárgyaljuk. Az elő és utóülepítők közötti különbség: Az elő ülepítők a biológiai vagy a kémiai tisztítási fokozat előtt elhelyezkedő műtárgyak. Feladatuk a tisztítandó közegből a kiülepíthető és flotálható anyagok leválasztása, ezáltal előkészítve a biológiai illetve a kémiai tisztítási fokozatra. Az utóülepítők feladata a biológiai vagy kémiai tisztításból származó csapadékok, maradék anyagok, biológiai termékek kiülepítése. A funkcióból fakadóan, az előülepítőből származó iszap általában sűrűbb, mint az utóülepítő iszapja, és az utóülepítőből távozó tisztított közeg nagyobb tisztaságú. 1

14 2.2. Az ülepítők méretezése 4.ábra: ülepítők osztályozása (Öllős, 1992) Az előülepítőbe tisztítási hatásfokát a tartózkodási idő függvényében kommunális szennyvízre vonatkozóan a Sierp-féle ülepedési görbék mutatják, egyes komponensekre tájékoztató jelleggel: 5.ábra: Sierp-féle ülepedési görbék egyes összetevőkre előülepítőkre vonatkozóan (MI /4-1984) Az előülepítők méretezésekor az alábbi értékeket kell meghatározni: - az ülepítő felületi hidraulikai terhelése [m /m 2 *h] - a szükséges átlagos tartózkodási idő [h] - az ülepítő felületi lebegő anyag terhelése [kg/m 2 *h] - a vízszintes, illetve függőleges átfolyási sebesség [cm/s] - a bukó-él terhelése [m /m*h] 14

15 Felületi hidraulikai terhelés: A felületi hidraulikai terhelés (L f ) kétféle képletből számítható (méretezési módtól függően): (1) L f =Q m /A (2) L f =H/t Ahol: - Q m : a mértékadó vízhozam (utóülepítőknél a recirkuláció beleszámítandó) - A: a műtárgy hasznos felülete - H: a műtárgy mélysége - t: a szükséges tartózkodási idő Utóülepítők esetében az átlagos hasznos mélység legalább 2,5 m legyen, az iszapréteg tározás miatt. Szennyvíztisztításban használt ülepítők maximális felületi terhelési adatait az alábbi táblázat szemlélteti: Előülepítő Utóülepítő Tisztítási eljárás Hosszanti Sugárirányú Függőleges Hosszanti Sugárirányú Függőleges Felületi hidraulikai terhelés [m/m2*h] Mechanikai 1, 1, 1, Csepegtető testes 1, 1, 1, 1,2 1 1,2 Eleveniszapos 4 4 0,7 0,6 0,8 Kémiai 4 4 1,2 1 1,2 5.táblázat: Az egyes ülepítő típusok maximális felületi terhelési értékei (MI /4-1984) Utóülepítők esetében a hidraulikai terhelésnél a nagykörös recrikuláció okozta többlet terhelést figyelembe kell venni! A tartózkodási idő, és a műtárgy térfogata Előülepítőkben a maximális tartózkodási idő: 6 h. Az egyes ülepítő típusokhoz tartozó ajánlott legkisebb tartózkodási időket az alábbi táblázat tartalmazza: Tisztítási eljárás Ajánlott legkisebb tartózkodási idő [h] Előülepítő Utóülepítő Mechanikai 1,2 - Csepegtető testes 1,2 1,5 Eleveniszapos 0,4 2,2 Kémiai 0,4 1,5 6.táblázat: Az ülepítőkben javasolt legkisebb tartózkodási idők(mi /4-1984) A tartózkodási idő felvételével, meghatározható a műtárgy hasznos térfogata: V h = t*q m 15

16 Az így kapott térfogat értéket korrigálni kell, az ülepítő típusától függő un. hidraulikai hatásfokkal, melynek értékeit a 7-es táblázat tartalmazza: V=V h /η h Ülepítő-típus Hidraulikai hatásfok [%] Hosszanti átfolyású 80 Sugárirányú átfolyású 70 Függőleges átfolyású 60 7.táblázat: Ülepítők hidraulikai hatásfoka(mi /4-1984) A felületi LA terhelés Az ülepítő felületi LA terhelése az alábbi képlettel határozható meg: L LA =Q*C LA /A Ahol: - Q: a napi szennyvíz mennyisége [m /h]-ban - C LA : a belépő LA koncentrációja [kg/m ] - A: a medence hasznos felülete [m 2 ] A megengedhető felületi LA terhelés előülepítők esetében kg/m 2 *h, de a téli időszakban javasolt maximum 2 kg/m 2 *h-val számolni. Utóülepítőkre vonatkozóan a műtárgyból elfolyó szennyvíz LA koncentrációja és a felületi LA terhelés kapcsolatát téli és átlagos hőmérsékletű szennyvízre az alábbi grafikonok szemléltetik. 6.ábra: Utóülepítők felületi LA terhelésének hatása az elfolyó víz minőségére(mi /4-1984) 16

17 Utóülepítők esetén az elfolyó szennyvíz maximális LA tartalma g/m lehet. Előülepítés esetén ez az érték 0-00 g/m között változik, az utána kapcsolódó technológiától függően. Az eleveniszapos levegőztető medencét követő utóülepítőt terhelő C LA lebegő anyag koncentráció közelítőleg az alábbi összefüggésből számítható: C X + C LA tot EÜ la Ahol X tot az eleveniszapos levegőztető medencében biztosítandó eleveniszap koncentráció és C LA EÜ pedig az előülepítőt elhagyó LA-koncentráció. Fontos megemlíteni, hogy utóülepítők hidraulikai méretezésekor az utóülepítőt terhelő vízhozam a nyers szennyvízhozam recikrulációs rátával korrigált értéke, azaz: Q UÜ be = ( 1+ R) Q be Átfolyási sebességek Az átfolyási sebesség értéke ne haladja meg a 1 cm/s értéket! Bukó-él hidraulikai ellenőrzése A bukó-él terhelés maximális értéke (MI /4-1984): - előülepítőknél: L Bmax =6 m /m*h, - utóülepítőknél: L Bmax =18 m /m*h, A bukó-él ellenőrzése az alábbi képlet alapján történik: Qm L B max LB = l B Ahol l B a bukó-él hossza. A bukóélet mindig célszerű fogazni! Előülepítő iszapzsompjának méretezése Előülepítők esetében 6-12 órányi keletkező iszapmennyiség tárolására szolgáló zsomptérfogatot szükséges kialakítani (MI /4-1984). A számított zsomptérfogat geometriai méretezését a szennyvíz hatékony ülepítő terének geometriája szabja meg. Az iszapzsomp alja 0,-0,5 m fenékszélességgel kerüljön kialakításra. Az iszapzsomp oldalfala legalább 1,6:1-hez hajlású legyen. Az előülepítőből kikerülő primer iszap főbb jellemzői (MI /2-1984): - az iszap szárazanyagtartalma: 2-5%. - az iszap fajlagos mennyisége: 1,08 l/le,nap - az iszap szerves-anyag hányada: 70,5 tömeg% 17

18 Az iszapzsomp térfogata legegyszerűbben a telep BOI5-ben számított LE-terheléséből, a szükséges iszaptározási idő alapján számítható Utóülepítő iszapzsompjának egyszerűsített méretezése Utóülepítők esetében az iszaptér térfogatát a napi kiülepítendő iszapmennyiség 2 órányi részére kell felvenni az iszapsűrítés figyelembe vétele esetén. A számított zsomptérfogat geometriai méretezését a szennyvíz hatékony ülepítő terének geometriája szabja meg. Az iszapzsomp alja 0,4-0,6 m fenékszélességgel kerüljön kialakításra. Az iszapzsomp oldalfala legalább 1,6:1-hez hajlású legyen (MI /4-1984). Az utóülepítőből kikerülő szekunder iszap főbb jellemzői (MI /2-1984): - Az iszap száraz-anyagtartalma: 1-2%. - Az iszap fajlagos mennyisége csepegtetőtestes tisztításnál: 0,22-0,4 l/le,nap - Az iszap szerves-anyag hányad csepegtetőtestes tisztításnál: 60-61,5 tömeg% - Az iszap fajlagos mennyisége eleveniszapos tisztításnál: 1,25-,1 l/le,nap - Az iszap szerves-anyag hányad eleveniszapos tisztításnál: tömeg% Az iszapzsomp térfogata kétféleképpen számítható. Egyik számítási mód szerint a telep BOI5-ben számított LE-terheléséből, és a szükséges iszaptározási idő alapján számítható. A másik módszer az eleveniszapos medencéből távozó A másik közelít számítási mód lehet a befolyó és az elfolyó lebegőanyag koncentráció különbségéből, az iszap tározási időből illetve a Mohlmann-indexből (Lásd a levegőztető medence méretezésénél) történő számítás. 2.. Vízszintes hosszanti átfolyású ülepítők Kialakításuk Alkalmazása, 200 m feletti műtárgy térfogat esetén gazdaságos. Műtárgy kialakítás főbb szempontjai (MI /4-1984): : - átlagos mélység 1,5-2,5 m - a műtárgy szélességét, a lehetséges kotró méretek figyelembe vételével kell meghatározni. - Javasolt hossz és szélesség arány: :1 - Javasolt szélesség: 4-8 m - Javasolt mélység és hossz arány: 1:0-1:20 - Fenéklejtés az iszapzsomp felé: 1,5-2 % - A bevezetések kialakítása úgy történjen, hogy a lecsökkentse a bejövő víz energiáját (pl. ütköző tárcsák, elosztó csövek, homlokfal áttörések vagy rések) - A bevezetéseket lehetőleg a hasznos vízmélység középső 1/-adában kell megvalósítani - Uszadék visszatartás céljából a gyűjtő vályúban merülő-falat célszerű kialakítani, az oldalfalban uszadék eltávolító nyílással 18

19 7.ábra: Hosszanti átfolyású ülepítő kialakítása (Öllős, 1992) Méretezés, példák példa: Hosszanti átfolyású ülepítő főméreteinek meghatározása Határozzuk meg egy vízszintes hosszanti átfolyású előülepítő fő méreteit, az alábbi adatok ismeretében: - A műtárgy egy csepegtető testes tisztító mű előülepítője - A mértékadó vízhozam: Q m =400 m /h - Az átfolyási sebesség: 0,5 cm/s=18 m/h - 2 db egymással párhuzamos ülepítő kerül kialakításra - A bejövő szennyvíz LA tartalma: 50 g/m, a távozó szennyvíz elvárt LA tartalma: 120 g/m. 19

20 A 5-ös táblázatból meghatározható a maximális felületi terhelés: L f =1, m /m 2 *h Az 6-os táblázatból pedig a minimális tartózkodási idő: t=1,2 h Válasszuk a tartózkodási időt: 1,5 h-nak, a felületi hidraulikai terhelést pedig 1,2 m /m 2 *hnak. Így 1 db műtárgy hasznos térfogata: V(h)=Qm*t=1,5*200=00 m A szükséges térfogat számítható a 7-es táblázatból választandó hidraulikai hatásfok figyelembe vételével: V= V h /η h =00/0,8=75 m A szükséges hasznos felülete: A=Q m /L f =200/1,2=167 m2 A kettőből számítható a hasznos mélység: H=L f *t=1,2*1,5=1,8 m A műtárgy hasznos keresztmetszete (a homokfogóknál tanultak alapján): Av=Qm/v=200/18=11,1 m2 Így a műtárgy hasznos szélessége: B=Av/H=11,1/1,8=6,2 m A műtárgy hossza: L=A/B=167/6,2=27 m A műtárgy ellenőrzése felületi LA terhelés szempontjából: L LA =Q*C LA /A=200*0,5/167=0,41 kg/m 2 *h 6. számú ábráról leolvasható a távozó szennyvíz várható LA tartománya a hőmérséklettől függően: 8-5 g/m. Tehát a tartózkodási idő csökkenthető, és a hidraulikai felületi terhelés növelhető! A fenti számítást addig kell ismételni, míg a megadott peremfeltételekhez leginkább közelítő megoldás adódik! A műtárgy tényleges mélységének számításakor, a hasznos mélységhez hozzá kell adni a gyűjtővályú, az iszaptér, és a víz feletti rész magasságát Vízszintes sugárirányú átfolyású ülepítő Kialakítás Javasolt alkalmazása m feletti ülepítő tér esetén. Műtárgy kialakítási szempontjai (MI /2-1984): - 40 m feletti átmérő nem javasolt a szél fokozott hatásai miatt - javasolt vízmélység: átmérő arány 1:20-1:25 - fenéklejtés (2-%) és a medence átmérőjének pontos maghatározása a kotróberendezéssel összhangban történjen - iszapzsomp oldal falainak lejtése 60 - a víz elvezetésére a 2..1-ben foglaltak érvényesek 20

21 8.ábra: Sugárirányú átfolyású ülepítő kialakítása (Öllős, 1992) 21

22 Méretezés, példák feladat: Vízszintes sugárirányú átfolyású ülepítő fő méreteinek meghatározása Az alábbi adatok ismeretében végezzük el egy vízszintes sugárirányú átfolyású ülepítő fő méreteinek meghatározását, valamint a bukóél méretezését: - A műtárgy egy eleveniszapos tisztító mű utóülepítője - A mértékadó vízhozam: Q m =400 m /h - 2 db egymással párhuzamos ülepítő kerül kialakításra - A bejövő szennyvíz LA tartalma: 2000 g/m, a távozó szennyvíz maximális LA tartalma: 0 g/m. A 5-ös táblázatból meghatározható a maximális felületi terhelés: L f =0,6 m /m 2 *h Az 6-os táblázatból pedig a minimális tartózkodási idő: t=2,2 h Válasszuk a tartózkodási időt: t=2, h-nak, a felületi hidraulikai terhelést pedig L f =0,5 m /m 2 *h-nak. Így 1 db műtárgy hasznos térfogata: V h =Q m *t=2,*200=460 m A szükséges térfogat számítható a 6-os táblázatból választandó hidraulikai hatásfok figyelembe vételével: V= V h /η h =00/0,7=660 m. A szükséges hasznos felület: A=Q m /L f =200/0,5=400 m 2 Ebből a hasznos felülethez tartozó átmérő: D=22,5 m A műtárgy átlagos hasznos mélysége: H=V/A=1,65 m A felületi LA terhelés: L LA =Q*C LA /A=200*2/400=1 kg/m 2 *h 6. számú ábráról leolvasható a távozó szennyvíz maximális LA koncentrációja: 0 g/m. Tehát a műtárgy LA leválasztás szempontjából megfelelt! A műtárgy tényleges mélységének számításakor, a hasznos mélységhez hozzá kell adni a gyűjtővályú, az iszaptér, és a víz feletti rész magasságát. A bukóél méretezése: Körbefutó bukóél esetén a bukóél hossza: l B =D*π=70,7 m A számított élterhelés: L B =Q m /l B =200/70,7m=2,8 m /m*h<18m/m*h A fogazás méretei a 9-es számú ábrán található képletek és grafikon segítségével egyszerűen számíthatóak! 22

23 9. ábra: bukó-él méretezés segéd diagrammja és összefüggései (Kucsera, 1995) 2.5. Függőleges sugárirányú átfolyású ülepítők Ezt a műtárgytípust maximum V h =100 m hasznos műtárgy térfogatig célszerű alkalmazni Kialakítás (MI /2-1984, MSZ EN ): - Általában kör alakú, tölcséres kialakítású műtárgyak. - A csillapító hengert úgy kell kialakítani, hogy a lefelé áramló víz sebessége ne haladja meg a cm/s értéket. - A bukóél terhelés nem lehet több m /m,h-nál. - Az iszapzsomp részű-hajlása legalább 1:1,75 legyen - A csillapító henger alsó síkját a teljes medence mélység 2/-ban kell előírányozni. - A feláramlási sebesség ne haladja meg az 1 m/h értéket. 2

24 10. ábra: Függőleges átfolyású ülepítő kialakítása (Öllős, 1992) Méretezés, példák feladat: Függőleges sugárirányú átfolyású ülepítő fő méreteinek meghatározása Az alábbi adatok ismeretében végezzük el egy függőleges sugárirányú átfolyású ülepítő fő méreteinek meghatározását: - A műtárgy egy eleveniszapos tisztító mű utóülepítője - A mértékadó vízhozam: Q m =25 m /h - A bejövő szennyvíz LA tartalma: 1500 g/m, a távozó szennyvíz maximális LA tartalma: 0 g/m. A 5-ös táblázatból meghatározható a maximális felületi terhelés: L f =0,6 m /m 2 *h Az 6-os táblázatból pedig a minimális tartózkodási idő: t=2,2 h Válasszuk a tartózkodási időt: t= h-nak, a felületi hidraulikai terhelést pedig L f =0,6 m /m 2 *h-nak. Így a műtárgy hasznos térfogata: V h =Q m *t=*25=75 m A szükséges térfogat számítható a 6-os táblázatból választandó hidraulikai hatásfok figyelembe vételével: V= V h /η h =75/0,6=125 m. A szükséges hasznos felület: A=Q m /L f =25/0,6=42 m 2 Ebből a hasznos felülethez tartozó átmérő: D=7, m A műtárgy átlagos hasznos mélysége: H=V/A=125/42=,0 m 24

25 A csillapító henger átmérője: D = Q 4* v m = 25 4* 600*0,0 π cs cs 0, 5 π = A felületi LA terhelés: L LA =Q*C LA /A=25*1,5/42=0,9 kg/m 2 *h 6. számú ábráról leolvasható a távozó szennyvíz maximális LA koncentrációja: 0 g/m. Tehát a műtárgy LA leválasztás szempontjából megfelelt! A feláramlási sebesség ellenőrzése: Qm Qm 25 v fel = = = = 0,6m / h 1m / h A Acs 2 2 π 2 2 π ( D d )* (7, 0,5 )* 4 4 Tehát a feláramlási sebesség az adott geometria esetén megfelel! m 25

26 . Biológiai szennyvíztisztítási alapok A szennyvíztisztításban a biológiai műveleteket két fő csoportra oszthatjuk: - fixfilmes biológiai reaktorok, melyek közül néhány főtípus - levegőztetett kavicsszűrők - csepegtető testek - forgó-merülő tárcsás reaktorok - gyökérzónás műtárgyak - talaj, vagy homokszűrők - szuszpendált állapotú biológiai reaktorok - tavas szennyvíztisztítók - eleveniszapos reaktorok - az előző kettő kombinációja A biológiai műveletek feladata az oldott állapotú biológiailag lebontható szerves vagy szervetlen szubsztrátok eltávolítása a szennyvízből. A technológia alapelve, hogy az adott szennyvíztípushoz adaptálódott mikroorganizmusokat minél nagyobb felületen és mennyiségben, megfelelő kontaktidő biztosítása mellett érintkeztessük a tisztítandó szennyvízzel. A folyamat lezajlása érdekében pedig szükséges a megfelelő élettér biztosítása (pl. aerob reaktorok esetén oxigén bevitel) illetve az inhibitor hatások kiküszöbölése (pl. toxikus anyagok jelenlétének kizárása). Jelen jegyzet részleteiben nem tárgyalja az egyes reaktortípusok elméleti hátterét, és a továbbiakban is csak egy-két fontosabb főtípussal foglalkozik..1. Eleveniszapos levegőztető medencék Az eleveniszapos szennyvíztisztítási eljárás a kommunális szennyvíztisztítás területén a legelterjedtebb módszer. A technológia számos válfaja ismert, melyeket leginkább a reaktor típusok és azok egymáshoz viszonyított elrendezései különböztetnek meg. A kizárólag aerob reaktorból (levegőztetett medencéből) álló rendszer a lehető legegyszerűbb változata az eleveniszapos technológiának. Ebben az esetben a z eleveniszapos levegőztető medencét egy fázisszétválasztó egység (utóülepítő vagy membrán-szűrés) követi. Az eleveniszapos medencében történik az oldatban lévő szubsztrátok kiválasztása, majd a sejtmassza szaporulatba került szubsztrátok szeparálása a folyadékból a fázis szétválasztó egységben történik meg. Ez miatt a fázisszétválasztó egység és a biológiai reaktor szerves egységet alkotnak. A fázisszétválasztó egységben kiválasztott biomassza egy részét vissza kell recirkuláltatni az eleveniszapos levegőztető medencébe a megfelelő biomassza sűrűség fenntartása érdekében. A rendszer elvi sémáját az alábbi ábra mutatja. 26

27 11. ábra: Eleveniszapos technológia alapváltozatának elvi sémája (Öllős, 1992) Az eleveniszapos szennyvíztisztítási technológia alapváltozatától a szerves vegyületek aerob lebontásán túl megfelelő méretezés esetén elvárható a szennyvíz ammónia tartalmának részleges nitrifikációja is. Az eleveniszapos szennyvíztisztítás alapváltozatának számos továbbfejlesztett változata van. Ezeknél általában aerob, anaerob illetve anoxikus szelektorok különböző arányú és elrendezésű reaktor elrendezésével érnek el nagyobb hatásfokot a nitrifikációs illetve a szerves anyag leválasztási hatásfok tekintetében, és vagy kiterjesztik a tisztítást a foszfor formákra és a nitrát denitrifikációjára is. Ezekben az esetekben a hatékonyságú fokozása érdekében ún. kiskörös recirkulációkat is gyakran kialakítanak az alapváltozat recirkulációján kívül. Továbbá fokozza a technológiai alternatívák sokszínűségét, amikor a foszfor vegyületek eltávolítási hatásfokát vegyszeradagolással fokozzák. Az eleveniszapos levegőztető medencét terhelési viszonyai szerint osztályozzuk a leggyakrabban, az alábbiak szerint (MSZ-EN :2002): - szerves anyagok részleges eltávolítása (nagyterhelésű rendszer) - szerves anyagok teljes eltávolítása (közepes terhelésű rendszer) - szerves anyagok teljes eltávolítása nitrifikációval (kisterhelésű rendszer) - szerves anyagok teljes eltávolítása, nitrifikációval és az iszap stabilizációjával (totáloxidációs rendszer) A technológia reakció-kinetikai és egyéb méretezési paramétereit általában a fentebbi osztályba sorolás alapján, illetve a tisztítandó szennyvíz minősége alapján választjuk ki. Ezeket mutatják az alábbi táblázatok: 27

28 9. táblázat: Eleveniszapos levegőztető medence főbb tervezési paraméterei (Benedek-Valló, 1990) (MEGJEGYZÉS: MLSS az eleveniszap koncentrációt jelenti, jelen jegyzetben a továbbiakban X tot jelölést használunk rá, míg az F/M az iszapterhelés jelenti, melyet a továbbiakban L v,s1 - nek jelölünk ) 10.táblázat: Tájékoztató értékek különböző típusú eleveniszapos rendszerek főbb tervezési paramétereire (MSZ-EN :2002).1.1. Kialakítás (MI /5-84, MSZ-EN :2002) - A levegőztető medencében minimum 1,5-2,5 mg/l oldott oxigénszint csúcsterhelés esetén is álljon rendelkezésre. - A levegőzetési rendszert és a keverőket úgy kell kialakítani, hogy a lebegő anyagok kiülepedés ne történhessen meg, és a levegőztető medencében holtterek ne alakulhassanak ki. - A recirkulált eleven iszap és a nyers szennyvíz jó elkeveredése biztosított legyen. - A szennyvíz hőmérséklete télen a lehető legkisebb mértékben csökkenjen 28

29 - A megfelelő oxigén beviteli hatékonyság érdekében a levegőzető medence mélysége 2,5 m-nél kisebb ne legyen Méretezés, példák példa: Eleveniszapos levegőztető medence közelítő méretezése Az eleveniszapos tisztító műtárgyra érkező települési szennyvíz mennyisége: 50 m /nap, a levegőztető medencére érkező szennyvíz BOI5 koncentrációja: 00 g/m, NH4-N koncentrációja: 25 g/m, és LA tartalma 100 g/m. Az utóülepítő műtárgyból elfolyó szennyvíz megengedhető BOI5 koncentrációja: 0 g/m, és megengedhető NH4-N koncentrációja: 10 g/m. A szennyvíztelepre érkező szennyvíz lakos-egyenértéke BOI5-re vonatkoztatva: 500 LE. A szennyvízhőmérséklet 15 C. Az utóülepítőből 0 g/m -es maximális LA-koncentráció-ú víz távozhat. Szakirodalmi ajánlások felhasználásával, határozza meg: 1. A műtárgytól elvárt tisztítási hatásfokokat 2. A levegőztető medence térfogatát. A biológiai lebontás oxigén szükségletét 4. A szükséges recirkuláció mértékét 5. A keletkező fölös-iszap mennyiséget 6. Az iszapkor nagyságát. A számítás kiindulási adatai: Elvárt tisztítás mértéke: m Q = 50 d LA g Cbe = 100 m LA g Cki = 0 m BOI 5 g Cbe = 00 m BOI 5 g Cki = 0 m NH 4 N g Cbe = 25 m NH 4 N g Cki = 10 m η η BOI 5 NH 4 N C = C = C BOI 5 BOI 5 be ki BOI 5 Cbe C NH 4 N NH 4 N be ki NH 4 N Cbe 00 0 *100 = *100 = 90% *100 = *100 = 60% 25 29

30 A levegőztető medence szükséges térfogata: - A szükséges átlagos tartózkodási idő meghatározása: A Monod-féle kinetikából levezetve első fokú reakció figyelembe vételével, számítható a tartózkodási idő (levegőztetési idő) (Benedek, Valló 1990): C t = k * X BOI 5 be 1 C * C BOI 5 ki BOI 5 ki ahol: - k: a biológiai lebontás reakciósebességi állandója [l/mg*d]. Települési szennyvíz esetén a k értéke (Benedek-Valló, 1990) 0,017 0,0 l/mg*d, míg ipari szennyvíz esetében 0,006-0,014 l/mg*d. Esetünkben a városi szennyvízre vonatkozó minimális értéket felvéve k=0,017 l/mg*d. - X 1 : a műtárgyban lévő eleveniszap koncentrációja (szerves rész) [kg/m; g/m] A 9-es táblázatból: X 1 = 2,5 kg/m t = = 0,21nap = 5,1h 10h 0,017*2500*0 Az MI /5-84 alapján, amennyiben nitrifikációt is elvárunk a rendszertől legalább 8 órás levegőztetési időt kell biztosítanunk. A 9-es táblázatban közölt adatok alapján 10 órára kerekítettük fel a számított értéket. - A műtárgy szükséges hasznos térfogata: V = Q* t = 50* 0,42 150m - A műtárgy BOI 5 -térfogati terhelésének (L b ) ellenőrzése (MI /5-84): L Q * C = V 50*00 kg = = 0,7 150*1000 m d BOI 5 be b A 6-os számú mellékletből jól látható, hogy nitrifikáció esetén, ez pontosan az elvárt térfogati terhelés érték, tehát ebből a szempontból a kalkulált műtárgytérfogat megfelelt. - A műtárgy iszap és BOI 5 terhelésének ellenőrzése (MI /5-84): Ehhez először ki kell számítani az eleveniszap koncentráció értékét, a méretezés elején felvett X 1 eleveniszap koncentráció szerves hányadából. X 1 X tot = = = c 1 2,5 0,7,6kg / m 0

31 Ahol c 1 [-] az eleveniszap szerves hányada, melynek értéke a 6-os számú mellékletben található. A 10-es táblázat alapján X tot -ra ez az érték megfelelő. L BOI Q * Cbe = X * V 50 *00 5 v, s1 = = tot,6 *150*1000 kg 0,19 kg * nap A 6-os számú melléklet erre az értékre 0,1-0,2 értéket, míg a 10-es táblázat 0,1-0,15 értéket ajánl. A 10-es táblázat javasolt értékeinek figyelembe vétele esetén az eleveniszap koncentrációt növelni kell legalább 0,19/0,15 arányban, azaz X tot =4,6 kg/m, melynek szerves hányada: X 1 =0,7*4,6=,2 kg/m. A szükséges oxigénbevitel kapacitás: A fajlagos oxigén-igény (Horváth, 1992): O f = ( k s r * v s + k ) * X e r 1 +,4* T h *( S NH 4 N 0 S NH 4 N e ) Ahol: - k r s : szubsztrátum oxigénigényének állandója [-] A 11-es táblázatból: k r s = 0,45 - k r e: az endogén légzés fajlagos sebessége [1/d] A 11-es táblázatból: k r e =0, táblázat: anyag-mérleg egyenletek állandói (Benedek-Valló, 1990) Városi szennyvízre a hozam-konstans értéket y=0,6-ra javasolt felvenni, a 11-es táblázatban foglaltakkal ellentétben. - vs : a tápanyaglebontás fajlagos sebessége [kg.boi5/kg.iszap*d], mely az alábbi képlet alapján számítható: C v = s BOI 5 be X C 1 * t BOI 5 ki 00 0 = 200 *0,42 kg. BOI5 = 0,2 kg. iszap * d 1

32 A 9-es táblázat erre ez értékre 0,1-0,15 értéket ajánl, míg a 6-os melléklet 0,16-0,26 értéket javasol. Így ezt megfelelőnek tekintjük. A tartózkodási idő illetve az eleveniszap koncentráció növelésével tovább fokozható a biztonság mértéke. - T h : a térfogati hidraulikai terhelés: T Q 50 m = = = 2, h V 150 m * d A tényezők ismeretében a fajlagos oxigén-igény: O f = go2 0,45*0,2 + 0,12)*200 +,4* 2,*(25 10) = = 791 m * d ( A szükséges oxigén beviteli kapacitás: OC n C s = β 1,25* C C * O 10,1 kgo2 = 1,*1,25* *0,791 = 1,71 10,1 2,5 m * d * f s e ahol: Cs : oxigén telítési koncentráció melynek értéke a 12-es táblázatból választható. Ce: a levegőztetett eleven iszap megengedett minimális oxigén koncentrációja: 2,0-2,5 mg/l β: a műtárgyra érkező szennyvíz minőségi és mennyiségi ingadozását figyelembe vevő tényező. Gyakorlati tapasztalatok alapján: 1,-1,5 (Horváth, 1992). 12. táblázat: A víz telítési oxigén koncentrációja az oldott sótartalom és a vízhőmérséklet függvényében (MI /5-84) A kapott érték ellenőrizhető a 9-es táblázatból, mely go 2 /m *d értéket javasol fajlagos oxigén-igényre. A teljes medencére vonatkoztatva: kgo * V = 1,71*150 = 256,5 d OC n 2 2

33 Levegő bevitel esetén a kapott oxigén-beviteli értékből az levegő oxigén koncentrációjának függvényében számítható a levegő bevitel mennyiségének értéke. 20 C -on a levegő oxigén koncentrációja 280 g/m. A számított oxigénbevitelt a BOI5 terhelés figyelembe vételével ellenőrizni kell: L ox OC = L b n 1,71 = *100 = 244% 0,7 Mivel az MI / % minimális értéket javasol, ezét megfelel (6-os melléklet). A szükséges recirkuláció mértéke: A recirkulációs arány az alábbi képlet alapján számítható: R = X X 1 X 1,2 *100 = *100 = 114% 6,2 Ahol: X : a recirkuláltatott iszap és a fölösiszap koncentrációja [kg/m], mely az alábbi képlet segítségével számítható: ahol: X = * c1 = *0,6 = 6 M i 120 M i : Mohlmann-féle iszapindex ml/g-ban, 9-es táblázatból M i =120 ml/g kg m A 6-os számú melléklet alapján ellenőrizhető a számított recirkuláció értéke. Esetünkben 115%-ot javasol a tárgyi táblázat, tehát megfelelt! A Mohlman-index (Mi vagy SVI) értelmezése: Mi=SVI = SV0/X [ml/g] Ahol: - SVI: iszap-ülepedési index - SV0: az iszap térfogata 0 perc ülepítést követően (ml/l) = 0 perces ülepedés - X: az iszap koncentrációja (g/l) - SVI: ml/g A fölös iszap hozam: A keletkező fölös-iszap mennyisége (Horváth, 1992): Fi = ( y * vs ke ) * X 1 + Th *( Li + La ) Ahol: - y: hozam-konstans: y=0,6 - ke : endogén fajlagos lebomlási sebesség [1/d],

34 a 11-es táblázatból: ke=0,09 1/d - Li: érkező lebegő anyag inert szerves része [kg/m], melynek értéke: 6,75 g/le*d kg L i = 6,75*500 /(50*1000) = 0,0675 m - L a : érkező lebegő anyag ásványi része [kg/m], melynek értéke:,9 g/le*d kg L a =,9*500 /(50 *1000) = 0,09 m Az ismert értékek segítségével a keletkező fölös-iszap mennyisége számítható: kg F i = ( 0,6*0,2 0,09) *,2 + 2,*(0, ,09) = 0,54 m * d A teljes műtárgytérfogatra vonatkoztatva: Az iszapkor: kg F i * V = 0,54*150 = 81 d Az iszap tartózkodási ideje a rendszerben: I V * X tot = V * F + Q * C 150* 4,6 K = = 7, 7 LA i e 150*0, *0,0 Az iszapkor értékére a 10-es táblázat 7-12 napot javasol, tehát megfelel. Hangsúlyozzuk, hogy a nitrifikációs hatásfok erősen hőmérsékletfüggő, így a téli időszakban általában magasabb iszapkor biztosítása szükséges. nap 4

35 .2. Csepegtető testes biológiai tisztítók A csepegtetőtestes szennyvíztisztítás a fixfilmes biológiai reaktoroknak az egyik legelterjedtebb válfaja. A technológia alapváltozata egy előülepítőből, egy csepegtetőtestes reaktorból és egy utóülepítőből áll. A technológia jellemző eleme továbbá a hígító recrirkuláció is. Az utóülepítő feladata ennél a technológiánál a csepegtető test töltetéről leszakadó biofilm kiülepítése. Egyes reaktor és recirkuláció elrendezési változatokat mutat az alábbi ábra. A csepegtető testeket technológiai számítások szempontjából szintén terhelési viszonyai alapján célszerű csoportosítani. Így szerves anyag és hidraulikai terhelés alapján az alábbi csoportokat különböztetjük meg: - kisterhelésű csepegtető testek - mérsékelt terhelésű csepegtető testek - nagy terhelésű csepegtető testek - szuper terhelésű csepegtető testek A terhelési viszonyok alapvetően befolyásolják a szükséges tervezési paramétereket illetve a tisztítási hatékonyságot. A nagy és szuperterhelésű csepegtető testeket általában előtisztítóként használják nagytöménységű szennyvizekhez, míg a mérsékelt illetve kisterhelésű csepegtető testeket a 80-as évek végéig előszeretettel használták kommunális szennyvíztisztításra is. Általánosságban elmondható, hogy a szerves anyag terhelés csökkenésével az elfolyó koncentráció csökken. Továbbá fontos megemlíteni, hogy a nagy illetve szuper terhelésű rendszerekben nitrifikáció nem tud lezajlani. A tervezési paraméterek javasolt értékeit a 1-as táblázat szemlélteti terhelési szinttől függően. 5

36 12. ábra: csepegtetőtestes reaktor elrendezési változatok (Öllős, 1992) 1. táblázat: A csepegtetőtestes reaktorok tervezési paraméterei (Öllős, 1992) 6

37 .2.1. Kialakítás A csepegtető testes reaktorok egy felső osztóműből, egy töltetoszlopból és egy alsó vízgyűjtő műből állnak. Fontos részük továbbá az areob ventilációt biztosító szellőző nyílás rendszer. A csepegtetőtestes reaktor elvi kialakítását az alábbi ábra szemlélteti. 1. ábra: Csepegtetőtestes reaktor elvi kialakítása (Öllős, 1992) A műtárgy lehet kőtöltetű illetve műanyag töltetű. Minél magasabb a tisztítási igény, annál inkább műanyag töltet alkalmazása javasolt (MI /5-84) Méretezés, példák példa: Kőtöltetű csepegtetőtest főméreteinek meghatározása Határozza meg annak a töltetes csepegtetőtestes szennyvíztisztító műtárgynak a fő méreteit, melyre 1980 m/nap kommunális szennyvíz érkezik, és az előülepítőről érkező szennyvíz BOI5 koncentrációja: 160 g/m. Az elvárt BOI5-re vonatkoztatott tisztítási hatásfok: 80 %. A recirkulációs arány: O. A számítás kiindulási adatai: η BOI 5 = 80% 5 g S BOI 0 = 160 m m Q = 1980 d R = 0% 7

38 A műtárgy BOI5 terhelése: E BOI BOI 5 5 = S 0 * Q = 160*1980 /1000 = kgboi5 16,8 d Az elfolyó szennyvíz BOI5 koncentrációja: S BOI 5 BOI 5 gboi 5 e = (1 η BOI 5) * S0 = 0,2 *160 = 2 m A műtárgy főméretei: A mellékelt 14-es ábrán szemléltetett segéd-diagramm felhasználásával a szükséges fajlagos terhelés értéke: L b =720g/m,d. A 1-as táblázat adatiból jól látható, hogy nagyterhelésű csepegtetőtestről van szó. 14. ábra: segéd-diagramm kőtöltetű csepegtetőtest főméreteinek meghatározásához (MI /5-4) A műtárgy szükséges térfogata: V E = 5 = m L 720 BOI = b A mellékelt 1-as táblázat alapján, a felületi terhelés értéke: Tf =25 m/m2,d 8

39 A műtárgy szükséges felülete és átmérője: Q A = T f = 1980 = 79,2m 2 25 D = 4*82,5 π = 10m A csepegtető test mélysége: H V 440 = = = 5, m A 79,2 6 Amennyiben recirkulációt is figyelembe veszünk a technológiai méretezéskor, az alábbi segéd-diagramm használható a méretezéshez: 15. ábra: Csepegtetőtestes reaktorok recirkuláció tisztítási hatásfok összefüggése(mi /5-4) 9

40 .. Merülő-tárcsás biológiai tisztítók A merülő-tárcsás biológiai tisztítók a fixfilmes biológiai reaktoroknak egy szintén elterjedt változata. Ebben az esetben a fixfilm tapadó felületét biztosító tárcsák forognak, és így ciklikusan merülnek el a szennyvízben. A levegőztetést a fixfilm nem víz alatt töltött időtartama alatt a tárcsa forgása biztosítja. A reaktor elrendezés módját illetően a csepegtetőtesteknél elmondottak érvényesek...1. Kialakítás A merülő-tárcsás biológiai reaktor elvi kialakítását az alábbi ábra szemlélteti: 16. ábra: Merülő-tárcsás reaktor elvi vázlata (Öllős, 1992)..2. Méretezés, példák példa: Merülő tárcsás biológiai reaktor elvi méretezése Határozza meg annak a merülő-tárcsás biológiai szennyvíztisztító műtárgynak a szükséges tárcsa-számát, amely egy 900 lakosú települést lát el. Az előülepítőről érkező szennyvíz BOI5 koncentrációja: 190 g/m. Az elfolyó szennyvíz megengedhető BOI5 koncentrációja: 25 g/m. A fajlagos vízfogyasztás: 120 l/fő,nap A számítás kiindulási adatai: S S BOI 5 0 BOI 5 e g = 190 m g = 19 m 900 lakosú település qf =120 l/fő,d 40

41 Mértékadó szennyvízhozamok meghatározása: Az átlagos napi szennyvíz-mennyiség: Q = q f *s*γ*l=120*0,8*1,2*900/1000=10,68 m/nap Ahol: - q: fajlagos vízfogyasztás [l/fő,d] - s: szennyvíz keletkezési arány [-] - γ: a lakos-szám várható változását és a vízfogyasztási szokások változását figyelembe vevő tényező [-] - l: lakos-szám A mértékadó óracsúcs-hozam: 1 m m q = * Q = 10,7 / 9 = 11,5 = 0,19 9 h min A műtárgytól elvárt tisztítási hatásfok: η BOI BOI 5 BOI 5 S 0 S e = *100 = *100 = 86,8% 90% BOI 5 S A műtárgy fő méreteinek meghatározása: A műtárgy fő méreteinek meghatározásához használjuk fel a 17-es ábrán bemutatott diagrammot: 41

42 17. ábra: Segéd-diagramm merülő-tárcsás reaktor méretezéséhez (MI /5-84) 2 A m *min = q m A szükséges hasznos tárcsafelület: A(t)=15000*0,19=2850 m2 A tárcsák átmérője: d= m 4* A 4*2850 n = = = 202db 2 2* d * π 2*9*,14 Tehát 202 db m átmérőjű tárcsa szükséges 42

43 Felhasznált források 1. Benedek Pál Valló Sándor: Víztisztítás-szennyvíztisztítás zsebkönyv. Műszaki könyvkiadó, Budapest, Dulovics Dezső: Biológiai szennyvíztisztítás méretezése (oktatási segédlet) BME, Vízi-közmű környezetmérnöki tanszék, Dulovics Dezső: Szennyvíztisztítás (oktatási segédlet) BME, Vízellátás-Csatornázás tanszék, Horváth Imre: A szennyvíztisztítás és az iszapkezelés berendezései és számításai BME Mérnöktovábbképző Intézet, Budapest, Kucsera Gyula: Környezetvédelmi Műszaki Praktikum II. - PMMF-jegyzet, Kucsera Gyula: Környezetvédelmi Műszaki Műveletek II. - PMMF-jegyzet, Magyar Szabvány: MSZ EN Szennyvíztisztító telepek. rész: Előtisztítás. 8. Magyar Szabvány: MSZ EN Szennyvíztisztító telepek 4. rész: Előülepítés. 9. Magyar Szabvány: MSZ EN Szennyvíztisztító telepek 6. rész: Eleveniszapos tisztítás. 10. Országos Vízügyi Hivatal Műszaki Irányelvek: Településekről származó szennyvizek tisztító telepei: Általános irányelvek. MI / Országos Vízügyi Hivatal Műszaki Irányelvek: Településekről származó szennyvizek tisztító telepei: Szennyvíz és szennyvíziszap mennyisége, minősége és a befogadó terhelhetősége. MI / Országos Vízügyi Hivatal Műszaki Irányelvek: Településekről származó szennyvizek tisztító telepei: Mechanikai tisztítás. MI / Országos Vízügyi Hivatal: Műszakai Irányelvek: Településekről származó szennyvizek tisztítótelepei Biológiai tisztítás. MI / Országos Vízügyi Hivatal: Műszakai Irányelvek: Településekről származó szennyvizek tisztítótelepei Iszapkezelés. MI / Öllös Géza: Szennyvíztisztítás I. - BME, Mérnöktovábbképző Intézet, Budapest, Öllős Géza: Szennyvíztisztítás II. - BME, Mérnöktovábbképző Intézet, Budapest, Vesztergom János: Műszaki kémiai, termosztatikai táblázatok, diagrammok. Pollack Mihály Műszaki Főiskola, Pécs,

Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Környezetmérnöki Tanszék

Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Környezetmérnöki Tanszék Pécsi Tudományegyetem Pollack Mihály Műszaki Kar Környezetmérnöki Tanszék H-7624 Pécs, Boszorkány út 2. Tel/Fax: 72/50-650/965 SZENNYVÍZTISZTÍTÁS ÜLEPÍTÉS ÉS BIOLÓGIAI MŰVELETEK (Oktatási segédanyag) Készítette:

Részletesebben

KÖRNYZETVÉDELMI MŰVELETEK ÉS TECHNOLÓGIÁK I. 6. Előadás

KÖRNYZETVÉDELMI MŰVELETEK ÉS TECHNOLÓGIÁK I. 6. Előadás KÖRNYZETVÉDELMI MŰVELETEK ÉS TECHNOLÓGIÁK I. 6. Előadás Szennyvíztisztítási technológiák Mechanikai és biológiai tisztítási fokozat Bodáné Kendrovics Rita Óbudai Egyetem RKK KMI 2010 Főbb csoportjai: 1.

Részletesebben

A hazai szennyvíztisztító kapacitás reális felmérésének problémái

A hazai szennyvíztisztító kapacitás reális felmérésének problémái A hazai szennyvíztisztító kapacitás reális felmérésének problémái Kárpáti Árpád Veszprémi Egyetem, 8200 Veszprém, Pf.:158 Összefoglalás A hazai szennyvízgyűjtő és szennyvíztisztító kapacitások reális felmérése

Részletesebben

Nitrogén-eltávolítás az Észak-pesti Szennyvíztisztító Telepen

Nitrogén-eltávolítás az Észak-pesti Szennyvíztisztító Telepen Nitrogén-eltávolítás az Észak-pesti Szennyvíztisztító Telepen Kassai Zsófia Fővárosi Csatornázási Művek Zrt. Bevezetés A növényi tápanyagok eltávolítása a szennyvízből, azon belül is a nitrogén-eltávolítás

Részletesebben

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék Környezettechnológia Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék Szennyvíz Minden olyan víz, ami valamilyen módon felhasználásra került. Hulladéktörvény szerint:

Részletesebben

Bevezetés - helyzetkép

Bevezetés - helyzetkép Új irányzatok a szennyvíz-technológiában hazai kutatási eredmények Dr. Fleit Ernő, Sándor Dániel Benjámin, Dr. Szabó Anita Budapesti Műszaki és Gazdaságtudományi Egyetem, Vízi Közmű és Környezetmérnöki

Részletesebben

KÖRNYEZETGAZDÁLKODÁS. Vízszennyezés Vízszennyezés elleni védekezés. Összeállította: Dr. Simon László Nyíregyházi Főiskola

KÖRNYEZETGAZDÁLKODÁS. Vízszennyezés Vízszennyezés elleni védekezés. Összeállította: Dr. Simon László Nyíregyházi Főiskola KÖRNYEZETGAZDÁLKODÁS Vízszennyezés Vízszennyezés elleni védekezés Összeállította: Dr. Simon László Nyíregyházi Főiskola Vízszennyezés Vízszennyezés minden olyan emberi tevékenység, illetve anyag, amely

Részletesebben

RÉTSÁG VÁROS ÖNKORMÁNYZATÁNAK KÉPVISELŐ-TESTÜLETE 2651 Rétság, Rákóczi út 20. Telefon: 35/550-100 www.retsag.hu Email: hivatal@retsag.

RÉTSÁG VÁROS ÖNKORMÁNYZATÁNAK KÉPVISELŐ-TESTÜLETE 2651 Rétság, Rákóczi út 20. Telefon: 35/550-100 www.retsag.hu Email: hivatal@retsag. RÉTSÁG VÁROS ÖNKORMÁNYZATÁNAK KÉPVISELŐ-TESTÜLETE 2651 Rétság, Rákóczi út 20. Telefon: 35/550-100 www.retsag.hu Email: hivatal@retsag.hu Előterjesztést készítette: Kramlik Kornélia műsz. es. Előterjesztő:

Részletesebben

Pannon-Connection Bt. Víz és Környezet Mérnökiroda 9023 Győr, Álmos u. 2. Tel. fax: 96-411-009 E-mail: pc@rovacsgabor.axelero.

Pannon-Connection Bt. Víz és Környezet Mérnökiroda 9023 Győr, Álmos u. 2. Tel. fax: 96-411-009 E-mail: pc@rovacsgabor.axelero. Pannon-Connection Bt. Víz és Környezet Mérnökiroda 9023 Győr, Álmos u. 2. Tel. fax: 96-411-009 E-mail: pc@rovacsgabor.axelero.net Megbízó: Tárkány Község Önkormányzata, 2945 Tárkány, Fő u. 144. Terv megnevezése:

Részletesebben

KÖRNYZETVÉDELMI MŰVELETEK ÉS TECHNOLÓGIÁK I. 7. Előadás. Szennyvíztisztítási technológiák 2. Bodáné Kendrovics Rita ÓE RKK KMI 2010

KÖRNYZETVÉDELMI MŰVELETEK ÉS TECHNOLÓGIÁK I. 7. Előadás. Szennyvíztisztítási technológiák 2. Bodáné Kendrovics Rita ÓE RKK KMI 2010 KÖRNYZETVÉDELMI MŰVELETEK ÉS TECHNOLÓGIÁK I. 7. Előadás Szennyvíztisztítási technológiák 2. Bodáné Kendrovics Rita ÓE RKK KMI 2010 III. Fokú tisztítási technológia N és P eltávolítása Természetes és mesterséges

Részletesebben

Tiszta oxigén adagolás és szabályozása a szennyvíztisztításban

Tiszta oxigén adagolás és szabályozása a szennyvíztisztításban Tiszta oxigén adagolás és szabályozása a szennyvíztisztításban Fazekas Bence - Kárpáti Árpád Reich Károly Pannon Egyetem, Veszprém 2010 A fajlagos szaporodási sebesség [μ] és a rendelkezésre álló tápanyag

Részletesebben

Ipari eredetű nyári túlterhelés a Debreceni Szennyvíztisztító Telepen.

Ipari eredetű nyári túlterhelés a Debreceni Szennyvíztisztító Telepen. Ipari eredetű nyári túlterhelés a Debreceni Szennyvíztisztító Telepen. Bevezetés A csemegekukorica feldolgozásának időszakában a debreceni szennyvíztelepen a korábbi években kezelhetetlen iszapduzzadás

Részletesebben

Biológiai eleveniszap formái az SBR medencékben (SBR technológiák problémái és kezelésük) Előadó: Horváth Gábor, Zöldkörök. 1.

Biológiai eleveniszap formái az SBR medencékben (SBR technológiák problémái és kezelésük) Előadó: Horváth Gábor, Zöldkörök. 1. Biológiai eleveniszap formái az SBR medencékben (SBR technológiák problémái és kezelésük) Előadó: Horváth Gábor, Zöldkörök 1. Bevezetés Az előadás bemutatja az SBR technológiák jellemzőit két kis telep

Részletesebben

(ökoszisztéma) jön létre.

(ökoszisztéma) jön létre. Organica Élõgépek ÉLÕGÉPEK A z Élõgépek szennyvíztisztítási technológia alapjait a 80-as évek végén és 90-es évek elején fejlesztették ki az Amerikai Egyesült Államokban és Nagy-Britanniában. A módszer

Részletesebben

MŰSZAKI FELTÉTELEK ASIO-MF-3-2005. AS-VARIOcomp K, N, N-PUMP Biológiai szennyvíztisztító berendezés család. Kiadta: ASIO Hungária Kft.

MŰSZAKI FELTÉTELEK ASIO-MF-3-2005. AS-VARIOcomp K, N, N-PUMP Biológiai szennyvíztisztító berendezés család. Kiadta: ASIO Hungária Kft. MŰSZAKI FELTÉTELEK AS-VARIOcomp K, N, N-PUMP Biológiai szennyvíztisztító berendezés család Kiadta: ASIO Hungária Kft. 1165 Budapest, Margit u. 114. Budapest, 2005. november 1 Jelen Műszaki Feltételek (MF)

Részletesebben

Biofilm rendszerek alkalmazása a szennyvíztisztításban

Biofilm rendszerek alkalmazása a szennyvíztisztításban 1 Biofilm rendszerek alkalmazása a szennyvíztisztításban 1 Oláh József - 2 Princz Péter - 3 Kucsák Mónika - 4 Gyulavári Imre 1. Bevezetés A biológiai szennyvíztisztításban a csepegtető- és forgó tárcsás

Részletesebben

Hajdúhadház és Téglás város szennyvízrendszerének és közös szennyvíztelepének bemutatása

Hajdúhadház és Téglás város szennyvízrendszerének és közös szennyvíztelepének bemutatása Hajdúhadház és Téglás város szennyvízrendszerének és közös szennyvíztelepének bemutatása Az üzemeltető bemutatása: A Hajdúkerületi és Bihari Víziközmű Szolgáltató Zrt.-t, mint üzemeltetőt 13 település

Részletesebben

VÍZGAZDÁLKODÁS ÉS SZENNYVIZEK

VÍZGAZDÁLKODÁS ÉS SZENNYVIZEK VÍZGAZDÁLKODÁS ÉS SZENNYVIZEK 3.1 3.5 A szennyvíz felhasználása öntözésre Tárgyszavak: talaj; öntözés; szennyvíz; szennyvízkezelés; fertőtlenítés. A szennyvíz öntözésre történő felhasználásával a száraz

Részletesebben

Tárgy: A keszthelyi szennyvíztisztító telep iszapkezelő H A T Á R O Z A T

Tárgy: A keszthelyi szennyvíztisztító telep iszapkezelő H A T Á R O Z A T NYUGAT-DUNÁNTÚLI KÖRNYEZETVÉDELMI, TERMÉSZETVÉDELMI ÉS VÍZÜGYI FELÜGYELŐSÉG 9700 Szombathely, Vörösmarty u. 2. 9701 Pf.: 183 Kérjük, válaszában hivatkozzon iktatószámunkra! Ikt. sz.: 18-1/17/2010/II. Műszaki

Részletesebben

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék

Környezettechnológia. Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék Környezettechnológia Dr. Kardos Levente adjunktus Budapesti Corvinus Egyetem Talajtan és Vízgazdálkodás Tanszék A hulladék k definíci ciója Bármely anyag vagy tárgy, amelytől birtokosa megválik, megválni

Részletesebben

Polgár Város víziközműveinek gördülő fejlesztési terve 2016-2030

Polgár Város víziközműveinek gördülő fejlesztési terve 2016-2030 Polgár Város víziközműveinek gördülő fejlesztési terve 2016-2030 Víziközmű rendszer kódjai: Ivóvízrendszer: 11-23117-1-001-00-10 Szennyvízrendszer: 21-23117-1-001-00-06 A víziközmű rendszer üzemeltetője:

Részletesebben

MAGYAR RÉZPIACI KÖZPONT. 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu

MAGYAR RÉZPIACI KÖZPONT. 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu MAGYAR RÉZPIACI KÖZPONT 1241 Budapest, Pf. 62 Telefon 317-2421, Fax 266-6794 e-mail: hcpc.bp@euroweb.hu Tartalom 1. A villamos csatlakozások és érintkezôk fajtái............................5 2. Az érintkezések

Részletesebben

Kis települések szennyvízkezelésének megoldása az üzemeltetési szempontok figyelembevételével. Böcskey Zsolt műszaki igazgató

Kis települések szennyvízkezelésének megoldása az üzemeltetési szempontok figyelembevételével. Böcskey Zsolt műszaki igazgató Kis települések szennyvízkezelésének megoldása az üzemeltetési szempontok figyelembevételével Böcskey Zsolt műszaki igazgató Témavázlat: Szennyvíztisztításról általánosságban Egyedi szennyvíztisztítók

Részletesebben

A tápanyag-eltávolítási és az utóülepítési folyamatok hatásfoka téli üzemi viszonyok között

A tápanyag-eltávolítási és az utóülepítési folyamatok hatásfoka téli üzemi viszonyok között 1 A tápanyag-eltávolítási és az utóülepítési folyamatok hatásfoka téli üzemi viszonyok között Oláh József Mucsy György Fővárosi Csatornázási Művek Zrt. Hydrochem Kft. 1. Bevezetés A tápanyag-eltávolítás

Részletesebben

NYUGAT-DUNÁNTÚLI KÖRNYEZETVÉDELMI, TERMÉSZETVÉDELMI ÉS VÍZÜGYI FELÜGYELŐSÉG H A T Á R O Z A T

NYUGAT-DUNÁNTÚLI KÖRNYEZETVÉDELMI, TERMÉSZETVÉDELMI ÉS VÍZÜGYI FELÜGYELŐSÉG H A T Á R O Z A T NYUGAT-DUNÁNTÚLI KÖRNYEZETVÉDELMI, TERMÉSZETVÉDELMI ÉS VÍZÜGYI FELÜGYELŐSÉG 9700 Szombathely, Vörösmarty u. 2. 9701 Pf.: 183 Ikt. szám153-1/10/2009 Műszaki ea.: Pálfiné Jébert Tünde Telefon: 94/504-144

Részletesebben

Készült: Abony Város Önkormányzat Képviselő-testületének 2013. augusztus 1-i rendkívüli zárt üléséről.

Készült: Abony Város Önkormányzat Képviselő-testületének 2013. augusztus 1-i rendkívüli zárt üléséről. Abony Város Önkormányzat Képviselő-testülete 2740 Abony, Kossuth tér 1. 1-17/2013/JT. Tárgy: jkv-i kivonat Készült: Abony Város Önkormányzat Képviselő-testületének 2013. augusztus 1-i rendkívüli zárt üléséről.

Részletesebben

Készült: Abony Város Önkormányzat Képviselő-testületének 2013. augusztus 1-i rendkívüli zárt üléséről.

Készült: Abony Város Önkormányzat Képviselő-testületének 2013. augusztus 1-i rendkívüli zárt üléséről. Abony Város Önkormányzat Képviselő-testülete 2740 Abony, Kossuth tér 1. 1-17/2013/JT. Tárgy: jkv-i kivonat Készült: Abony Város Önkormányzat Képviselő-testületének 2013. augusztus 1-i rendkívüli zárt üléséről.

Részletesebben

Pannon-Connection Bt. Víz és Környezet Mérnökiroda 9023 Győr, Álmos u. 2. Tel. fax: 96-411-009 E-mail: pc@rovacsgabor.axelero.

Pannon-Connection Bt. Víz és Környezet Mérnökiroda 9023 Győr, Álmos u. 2. Tel. fax: 96-411-009 E-mail: pc@rovacsgabor.axelero. Pannon-Connection Bt. Víz és Környezet Mérnökiroda 9023 Győr, Álmos u. 2. Tel. fax: 96-411-009 E-mail: pc@rovacsgabor.axelero.net Megbízó: Tárkány Község Önkormányzata, 2945 Tárkány, Fő u. 144. Terv megnevezése:

Részletesebben

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés 6. MENETMEGMUNKÁLÁSOK A csavarfelületek egyrészt gépelemek összekapcsolására (kötő menetek), másrészt mechanizmusokban mozgás átadásra (kinematikai menetek) szolgálnak. 6.1. Gyártási eljárások a) Öntés

Részletesebben

1.2 Általában a települési csapadékvíz elvezetési programokról, és alapelveiről

1.2 Általában a települési csapadékvíz elvezetési programokról, és alapelveiről 1. ELŐZMÉNYEK, A TERVEZÉS TÁRGYA 1.1 A tervezés tárgya, a feladat ismertetése: Budaörs Város Önkormányzata Budaörs Frankhegy Közműtervezés KÉ-23143 (KÉ-23802)számú egyszerűsített közbeszerzési eljárás

Részletesebben

4. A FORGÁCSOLÁS ELMÉLETE. Az anyagleválasztás a munkadarab és szerszám viszonylagos elmozdulása révén valósul meg. A forgácsolási folyamat

4. A FORGÁCSOLÁS ELMÉLETE. Az anyagleválasztás a munkadarab és szerszám viszonylagos elmozdulása révén valósul meg. A forgácsolási folyamat 4. A FORGÁCSOLÁS ELMÉLETE Az anyagleválasztás a munkadarab és szerszám viszonylagos elmozdulása révén valósul meg. A forgácsolási folyamat M(W) - a munka tárgya, u. n. munkadarab, E - a munkaeszközök,

Részletesebben

hír CSATORNA TARTALOM

hír CSATORNA TARTALOM hír CSATORNA 2006 A Magyar Szennyvíztechnikai Szövetség Lapja május június TARTALOM MASZESZ Hírhozó... 2 M. Krempels Gabriella: Merre tart a hazai csatornázás és szennyvíztisztítás... 3 Jobbágy Andrea,

Részletesebben

2. fejezet KÖRNYEZETI KOCKÁZATBECSLÉS

2. fejezet KÖRNYEZETI KOCKÁZATBECSLÉS 2. fejezet KÖRNYEZETI KOCKÁZATBECSLÉS 223 224 Tartalomjegyzék 1.1 Elõzmények 227 1.2 A környezeti kockázatok becslésének általános alapelvei 229 2 A környezeti expozíció becslése 231 2.1 Bevezetõ 231 2.1.1

Részletesebben

Technológiai rendszerek. Egyéb veszélyek. 11. hét: A szennyvíztisztítás technológiái és a gumihulladékok újrahasznosítása

Technológiai rendszerek. Egyéb veszélyek. 11. hét: A szennyvíztisztítás technológiái és a gumihulladékok újrahasznosítása Környezetvédelem A szennyvíztisztítás célja Technológiai rendszerek 11. hét: A szennyvíztisztítás technológiái és a gumihulladékok újrahasznosítása 2008/2009-as tanév, I. félév Horváth Balázs SZE MTK BGÉKI

Részletesebben

Hidraulika. 5. előadás

Hidraulika. 5. előadás Hidraulika 5. előadás Automatizálás technika alapjai Hidraulika I. előadás Farkas Zsolt BME GT3 2014 1 Hidraulikus energiaátvitel 1. Előnyök kisméretű elemek alkalmazásával nagy erők átvitele, azaz a teljesítménysűrűség

Részletesebben

TERMÉSZETKÖZELI ZELI SZENNYVÍZTISZTÍTÁS ÉS S EGYEDI SZENNYVÍZKEZELÉS ZKEZELÉS S JOGI ÉS S MŰSZAKI KÖVETELMÉNYRENDSZERE

TERMÉSZETKÖZELI ZELI SZENNYVÍZTISZTÍTÁS ÉS S EGYEDI SZENNYVÍZKEZELÉS ZKEZELÉS S JOGI ÉS S MŰSZAKI KÖVETELMÉNYRENDSZERE TERMÉSZETKÖZELI ZELI SZENNYVÍZTISZTÍTÁS ZTISZTÍTÁS ÉS S EGYEDI SZENNYVÍZKEZELÉS ZKEZELÉS S JOGI ÉS S MŰSZAKI KÖVETELMÉNYRENDSZERE KÁLÓCZY ANNA OKTVF KÖRNYEZETVÉDELMI SZAKÉRTŐI NAPOK Budapest, 2007. 06.

Részletesebben

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése: Szabó László Szilárdságtan A követelménymodul megnevezése: Kőolaj- és vegyipari géprendszer üzemeltetője és vegyipari technikus feladatok A követelménymodul száma: 047-06 A tartalomelem azonosító száma

Részletesebben

KOMPOSZTÁLÁS, KÜLÖNÖS TEKINTETTEL A SZENNYVÍZISZAPRA

KOMPOSZTÁLÁS, KÜLÖNÖS TEKINTETTEL A SZENNYVÍZISZAPRA KOMPOSZTÁLÁS, KÜLÖNÖS TEKINTETTEL A SZENNYVÍZISZAPRA 2.1.1. Szennyvíziszap mezőgazdaságban való hasznosítása A szennyvíziszapok mezőgazdaságban felhasználhatók a talaj szerves anyag, és tápanyag utánpótlás

Részletesebben

SZENNYVÍZKEZELŐ TELEP ILIRSKA BISTRICA

SZENNYVÍZKEZELŐ TELEP ILIRSKA BISTRICA SZENNYVÍZKEZELŐ TELEP ILIRSKA BISTRICA Hogyan működik az SBR rendszer (szakaszos betáplálású eleveniszapos szennyvíztisztítás) 1. Mechanikai : tisztítás Az Ilirska Bistrica által termelt szennyvíz egy

Részletesebben

Szakmai ismeret A V Í Z

Szakmai ismeret A V Í Z A V Í Z A hidrogén oxidja (H 2 O). A Földön 1 az egyik legelterjedtebb vegyület, molekula (2H 2 O). Színtelen, szagtalan folyadék, légköri (1013 mbar ~ 1013 hpa) nyomáson 0 o C-on megfagy, 100 o C-on forr,

Részletesebben

FAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA

FAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA FAUR KRISZTINA BEÁTA, SZAbÓ IMRE, GEOTECHNIkA 7 VII. A földművek, lejtők ÁLLÉkONYSÁgA 1. Földművek, lejtők ÁLLÉkONYSÁgA Valamely földművet, feltöltést vagy bevágást építve, annak határoló felületei nem

Részletesebben

Ellenőrző kérdések Vegyipari Géptan tárgyból a vizsgárakészüléshez

Ellenőrző kérdések Vegyipari Géptan tárgyból a vizsgárakészüléshez 2015. tavaszi/őszi félév A vizsgára hozni kell: 5 db A4-es lap, íróeszköz (ceruza!), radír, zsebszámológép, igazolvány. A vizsgán általában 5 kérdést kapnak, aminek a kidolgozására 90 perc áll rendelkezésükre.

Részletesebben

A hirdetmény kifüggesztésének, illetve levételének tényéről és idejéről a levételt követő 3 napon belül értesíteni szíveskedjék.

A hirdetmény kifüggesztésének, illetve levételének tényéről és idejéről a levételt követő 3 napon belül értesíteni szíveskedjék. NYUGAT-DUNÁNTÚLI KÖRNYEZETVÉDELMI, TERMÉSZETVÉDELMI ÉS VÍZÜGYI FELÜGYELŐSÉG 9700 Szombathely, Vörösmarty u. 2. 9701 Pf.: 183 Kérjük válaszában hivatkozzon iktatószámunkra! Ikt. szám:1575-1/14/2010.ii.

Részletesebben

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Az öntözés alapfogalmai. 34.lecke Az öntözés kialakulása hazánkban 1937 Öntözésügyi

Részletesebben

AMMÓNIA TARTALMÚ IPARI SZENNYVÍZ KEZELÉSE

AMMÓNIA TARTALMÚ IPARI SZENNYVÍZ KEZELÉSE AMMÓNIA TARTALMÚ IPARI SZENNYVÍZ KEZELÉSE Dr. Takács János egyetemi docens Miskolci Egyetem Nyersanyagelőkészítési és Környezeti Eljárástechnikai Intézet 1. BEVEZETÉS Számos ipari szennyvíz nagy mennyiségű

Részletesebben

1) Felszíni és felszín alatti vizek

1) Felszíni és felszín alatti vizek Kaba város környezeti állapotának bemutatása 2015. év A környezet védelmének általános szabályairól szóló 1995. évi LIII. törvény 46. (1) bek. e) pontja értelmében a települési önkormányzat (Budapesten

Részletesebben

Labormérések minimumkérdései a B.Sc képzésben

Labormérések minimumkérdései a B.Sc képzésben Labormérések minimumkérdései a B.Sc képzésben 1. Ismertesse a levegő sűrűség meghatározásának módját a légnyomás és a levegő hőmérséklet alapján! Adja meg a képletben szereplő mennyiségek jelentését és

Részletesebben

ÁLLATTARTÁS MŰSZAKI ISMERETEI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

ÁLLATTARTÁS MŰSZAKI ISMERETEI. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 ÁLLATTARTÁS MŰSZAKI ISMERETEI Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Szemestermények szárítása és tárolása 1. Nedves termények szárítástechnikai tulajdonságai 2. Szárítólevegő

Részletesebben

Vízellátás és szennyvízkezelés Dr. Török, Sándor

Vízellátás és szennyvízkezelés Dr. Török, Sándor Vízellátás és szennyvízkezelés Dr. Török, Sándor Vízellátás és szennyvízkezelés Dr. Török, Sándor Publication date 2011 Szerzői jog 2011 Szent István Egyetem Copyright 2011, Szent István Egyetem. Minden

Részletesebben

52 853 02 0010 52 01 Szennyvíztechnológus Víz- és szennyvíztechnológus 52 853 02 0010 52 02 Víztechnológus Víz- és szennyvíztechnológus 2/46

52 853 02 0010 52 01 Szennyvíztechnológus Víz- és szennyvíztechnológus 52 853 02 0010 52 02 Víztechnológus Víz- és szennyvíztechnológus 2/46 A 10/07 (II. 27.) SzMM rendelettel módosított 1/06 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK

KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2015. október 12. KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. október 12. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

MUNKAANYAG. Forrai Jánosné. Előkészítő munka. A követelménymodul megnevezése: Monolit beton készítése I.

MUNKAANYAG. Forrai Jánosné. Előkészítő munka. A követelménymodul megnevezése: Monolit beton készítése I. Forrai Jánosné Előkészítő munka A követelménymodul megnevezése: Monolit beton készítése I. A követelménymodul száma: 0482-06 A tartalomelem azonosító száma és célcsoportja: SzT-002-30 ELŐKÉSZÍTŐMUNKA

Részletesebben

Hogyan válasszunk ventilátort légtechnikai rendszerekhez?

Hogyan válasszunk ventilátort légtechnikai rendszerekhez? Próhászkáné Varga Erzsébet Hogyan válasszunk ventilátort légtechnikai rendszerekhez? A követelménymodul megnevezése: Fluidumszállítás A követelménymodul száma: 699-06 A tartalomelem azonosító száma és

Részletesebben

Hulladékgazdálkodás 1. 5. Előadás 15. Települési hulladéklerakók -Hulladéklerakóhelyekfajtái,kialakításilehetőségei, helykiválasztás szempontjai.

Hulladékgazdálkodás 1. 5. Előadás 15. Települési hulladéklerakók -Hulladéklerakóhelyekfajtái,kialakításilehetőségei, helykiválasztás szempontjai. Hulladékgazdálkodás 1. 5. Előadás 15. Települési hulladéklerakók -Hulladéklerakóhelyekfajtái,kialakításilehetőségei, helykiválasztás szempontjai. -Tervezésialapelvek, műszakivédelemkialakítása, vízrendezés,

Részletesebben

KÉPVISELŐ-TESTÜLETI ÜLÉS FÖLDES, 2016. JANUÁR 28.

KÉPVISELŐ-TESTÜLETI ÜLÉS FÖLDES, 2016. JANUÁR 28. 1 FÖLDES NAGYKÖZSÉG POLGÁRMESTERE 4177 FÖLDES, Karácsony Sándor tér 5./Fax: (54) 531 000 ; 531 001 E-mail: foldes.ph@gmail.com Iktatószám: 119-../2016. 6. E LŐTERJESZTÉS a Képviselő-testülethez a Község

Részletesebben

LEVEGŐTISZTASÁG-VÉDELEM

LEVEGŐTISZTASÁG-VÉDELEM BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Épületgépészeti és Gépészeti Eljárástechnika Tanszék Dr. Örvös Mária LEVEGŐTISZTASÁG-VÉDELEM (oktatási segédlet) Budapest, 2010 Tartalomjegyzék 1 Bevezetés...

Részletesebben

BUDAÖRS VÁROS SZENNYVÍZELVEZETŐ ÉS TISZTÍTÓ MŰVEINEK ÜZEMELTETÉSI SZABÁLYZATA

BUDAÖRS VÁROS SZENNYVÍZELVEZETŐ ÉS TISZTÍTÓ MŰVEINEK ÜZEMELTETÉSI SZABÁLYZATA BUDAÖRS VÁROS SZENNYVÍZELVEZETŐ ÉS TISZTÍTÓ MŰVEINEK ÜZEMELTETÉSI SZABÁLYZATA Készítette: TÖRSVÍZ Csatornamű Üzemeltető és Szolgáltató Kft. Törökbálint, 2013. március Tartalomjegyzék: oldalszám 1. A létesítmény

Részletesebben

TÁJÉKOZTATÓ. Dunaújváros Megyei Jogú Város környezeti állapotváltozásáról 2003

TÁJÉKOZTATÓ. Dunaújváros Megyei Jogú Város környezeti állapotváltozásáról 2003 TÁJÉKOZTATÓ Dunaújváros Megyei Jogú Város környezeti állapotváltozásáról 2003 Dunaújváros 2004 TARTALOMJEGYZÉK Tartalomjegyzék 1 Összefoglaló jelentés 2 Részletező jelentés 5 Légszennyezettségi állapot

Részletesebben

Az építményt érő vízhatások

Az építményt érő vízhatások Általános információk, alapfogalmak ACO Fränkische ACO MARKANT ACO ACO DRAIN DRAIN A megbízható szivárgórendszertõl biztonságot, ellenõrizhetõséget és nagy élettartamot várunk el. Ehhez szükséges a földdel

Részletesebben

SEVÍZ - SZ-SZV Szeged, Közműves Szennyvízelvezetés és tisztítás

SEVÍZ - SZ-SZV Szeged, Közműves Szennyvízelvezetés és tisztítás Gördülő Fejlesztési terv Felújítási és pótlási terv SEVÍZ - SZ-SZV Szeged, Közműves Szennyvízelvezetés és tisztítás MEKH kód: 21-33367-1-001-00-13 víziközművek felújítása, pótlása 2014. szeptember 1 TARTALOMJEGYZÉK

Részletesebben

KBE-1 típusú biztonsági lefúvató szelep család

KBE-1 típusú biztonsági lefúvató szelep család Kód: 485-0000.03g G É P K Ö N Y V KBE-1 típusú biztonsági lefúvató szelep család Készült: 2002.07.01. TARTALOMJEGYZÉK 1. Általános ismertetés 2. Műszaki adatok 3. Szerkezeti felépítés, működés 4. Átvétel,

Részletesebben

MEGOLDÁS a) Bernoulli-egyenlet instacioner alakja: p 1 +rgz 1 =p 0 +rgz 2 +ra ki L ahol: L=12m! z 1 =5m; z 2 =2m Megoldva: a ki =27,5 m/s 2

MEGOLDÁS a) Bernoulli-egyenlet instacioner alakja: p 1 +rgz 1 =p 0 +rgz 2 +ra ki L ahol: L=12m! z 1 =5m; z 2 =2m Megoldva: a ki =27,5 m/s 2 2. FELADAT (6p) / A mellékelt ábrán látható módon egy zárt, p t nyomású tartályra csatlakozó ÆD=50mm átmérőjű csővezeték 10m hosszú vízszintes szakasz után az utolsó 2 méteren függőlegesbe fordult. A cső

Részletesebben

VÍZZÁRÓ BETONOK. Beton nyomószilárdsági. Környezeti osztály jele. osztálya, legalább

VÍZZÁRÓ BETONOK. Beton nyomószilárdsági. Környezeti osztály jele. osztálya, legalább VÍZZÁRÓ BETONOK 1. A VÍZZÁRÓ BETONOK KÖRNYEZETI OSZTÁLYAI A beton a használati élettartam alatt akkor lesz tartós, ha a környezeti hatásokat károsodás nélkül viseli. Így a beton, vasbeton, feszített vasbeton

Részletesebben

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

MŰSZAKI ISMERETEK. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 MŰSZAKI ISMERETEK Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Az előadás áttekintése Méret meghatározás Alaki jellemzők Felületmérés Tömeg, térfogat, sűrűség meghatározása

Részletesebben

BME Vízi Közmő és Környezetmérnöki Tanszék. Szabó Anita. Foszfor eltávolítás és a biológiai szennyvíztisztítás intenzifikálása kémiai előkezeléssel

BME Vízi Közmő és Környezetmérnöki Tanszék. Szabó Anita. Foszfor eltávolítás és a biológiai szennyvíztisztítás intenzifikálása kémiai előkezeléssel BME Vízi Közmő és Környezetmérnöki Tanszék Szabó Anita Foszfor eltávolítás és a biológiai szennyvíztisztítás intenzifikálása kémiai előkezeléssel Doktori értekezés Témavezetı: Dr. Licskó István egyetemi

Részletesebben

Hulladékgazdálkodás. A hulladékgazdálkodás elméleti alapjai. A hulladékok fogalma, fajtái; környezeti hatásai

Hulladékgazdálkodás. A hulladékgazdálkodás elméleti alapjai. A hulladékok fogalma, fajtái; környezeti hatásai Hulladékgazdálkodás A hulladékgazdálkodás elméleti alapjai. A hulladékok fogalma, fajtái; környezeti hatásai "A múzeumok a múltat őrzik meg, a hulladék-feldolgozók a jövőt." (T. Ansons) 2015/2016. tanév

Részletesebben

Légsebesség profil és légmennyiség mérése légcsatornában Hővisszanyerő áramlástechnikai ellenállásának mérése

Légsebesség profil és légmennyiség mérése légcsatornában Hővisszanyerő áramlástechnikai ellenállásának mérése BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ÉPÜLETGÉPÉSZETI ÉS GÉPÉSZETI ELJÁRÁSTECHNIKA TANSZÉK Légsebesség profil és légmennyiség mérése légcsatornában Hővisszanyerő áramlástechnikai

Részletesebben

Kapuvári szennyvíztelep intenzifikálása (példa egy rendszer minőségi és mennyiségi hatékonyságának növelésére kis ráfordítással)

Kapuvári szennyvíztelep intenzifikálása (példa egy rendszer minőségi és mennyiségi hatékonyságának növelésére kis ráfordítással) Kapuvári szennyvíztelep intenzifikálása (példa egy rendszer minőségi és mennyiségi hatékonyságának növelésére kis ráfordítással) Horváth Gábor Zöldkörök Összefoglalás: A kapuvári szennyvíztelep példáján

Részletesebben

HITELESÍTÉSI ELŐÍRÁS TARTÁLYOK

HITELESÍTÉSI ELŐÍRÁS TARTÁLYOK HITELESÍTÉSI ELŐÍRÁS TARTÁLYOK GEOMETRIAI TARTÁLYHITELESÍTÉS HE 31/4-2000 TARTALOMJEGYZÉK 1. AZ ELŐÍRÁS HATÁLYA 2. MÉRTÉKEGYSÉGEK, JELÖLÉSEK 3. ALAPFOGALMAK 3.1 Tartályhitelesítés 3.2 Folyadékos (volumetrikus)

Részletesebben

TELEPÜLÉSI SZENNYVÍZISZAP HASZNOSÍTÁSÁNAK LEHETİSÉGEI 3.

TELEPÜLÉSI SZENNYVÍZISZAP HASZNOSÍTÁSÁNAK LEHETİSÉGEI 3. TELEPÜLÉSI SZENNYVÍZISZAP HASZNOSÍTÁSÁNAK LEHETİSÉGEI 3. 1 2. 1. 4. JELENLEGI HELYZET A települési szennyvíziszap Magyarországi mennyisége évente megközelítıen 700.000 tonna Ennek 25-30%-a szárazanyag

Részletesebben

Feladatok GEFIT021B. 3 km

Feladatok GEFIT021B. 3 km Feladatok GEFT021B 1. Egy autóbusz sebessége 30 km/h. z iskolához legközelebb eső két megálló távolsága az iskola kapujától a menetirány sorrendjében 200 m, illetve 140 m. Két fiú beszélget a buszon. ndrás

Részletesebben

Utak földművei. Útfenntartási és útüzemeltetési szakmérnök szak 2012. I. félév 2./1. témakör. Dr. Ambrus Kálmán

Utak földművei. Útfenntartási és útüzemeltetési szakmérnök szak 2012. I. félév 2./1. témakör. Dr. Ambrus Kálmán Utak földművei Útfenntartási és útüzemeltetési szakmérnök szak 2012. I. félév 2./1. témakör Dr. Ambrus Kálmán 1. Az utak földműveiről általában 2. A talajok vizsgálatánál használatos fogalmak 3. A talajok

Részletesebben

Szén-dioxid semleges elektromos energia előállítása szerves szennyezőanyagokból mikrobiológiai üzemanyagcellákban

Szén-dioxid semleges elektromos energia előállítása szerves szennyezőanyagokból mikrobiológiai üzemanyagcellákban Szén-dioxid semleges elektromos energia előállítása szerves szennyezőanyagokból mikrobiológiai üzemanyagcellákban Budapesti Műszaki és Gazdaságtudományi Egyetem Vegyészmérnöki és Biomérnöki Kar Alkalmazott

Részletesebben

Közös szennyvízelvezetési projektje

Közös szennyvízelvezetési projektje RÉDE ÉS BAKONYBÁNK Közös szennyvízelvezetési projektje ELŐZETES MEGVALÓSÍTHATÓSÁGI TANULMÁNY KEOP-1.2.0 A projektek az Európai Unió támogatásával, a Kohéziós Alap társfinanszírozásával valósulnak meg.

Részletesebben

Termék ismertető. PLASTEPUR házi szennyvíztisztító berendezések. Működési leírás, Típus ismertető, Engedélyek, Biológiai anyagok, Adatlapok

Termék ismertető. PLASTEPUR házi szennyvíztisztító berendezések. Működési leírás, Típus ismertető, Engedélyek, Biológiai anyagok, Adatlapok Működési leírás, Típus ismertető, Engedélyek, Biológiai anyagok, PLASTEPUR házi szennyvíztisztító berendezések. Adatlapok ISO minősítés Termék ismertető 8041 Csór Felsőtabán u. 4/c. Tel./Fax.: 22/599-518

Részletesebben

Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája. Épületgépészeti kivitelezési ismeretek 2012. szeptember 6.

Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája. Épületgépészeti kivitelezési ismeretek 2012. szeptember 6. Épületgépészeti csőanyagok kiválasztási szempontjai és szereléstechnikája Épületgépészeti kivitelezési ismeretek 2012. szeptember 6. 1 Az anyagválasztás szempontjai: Rendszerkövetelmények: hőmérséklet

Részletesebben

Közbeszerzési Értesítő száma: 2015/139 Építési beruházás Tervezés és kivitelezés

Közbeszerzési Értesítő száma: 2015/139 Építési beruházás Tervezés és kivitelezés Dél-Nyírségi Szennyvízelvezetési és -tisztítási projekt keretében Encsencs szennyvíztisztító telepének és Encsencs, Nyírbéltek, Piricse csatornahálózatának kivitelezésére - 1. szerz. módos Közbeszerzési

Részletesebben

MEGVALÓSÍTHATÓSÁGI TANULMÁNY KEOP-1.2.0/09-11 SZENNYVÍZELVEZETÉS- ÉS TISZTÍTÁS KONSTRUKCIÓ

MEGVALÓSÍTHATÓSÁGI TANULMÁNY KEOP-1.2.0/09-11 SZENNYVÍZELVEZETÉS- ÉS TISZTÍTÁS KONSTRUKCIÓ Hajdúnánás és Hajdúdorog Víziközmű Beruházási Társulás 4080 Hajdúnánás, Köztársaság tér 1. Hajdúnánás Hajdúdorog,,Hajdúnánás Hajdúdorog szennyvízhálózatainak és szennyvíztisztító telepének bővítése és

Részletesebben

A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA. Készítette: Szlavov Krisztián Geográfus, ELTE-TTK

A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA. Készítette: Szlavov Krisztián Geográfus, ELTE-TTK A BIOGÁZ KOMPLEX ENERGETIKAI HASZNA Készítette: Szlavov Krisztián Geográfus, ELTE-TTK I. Bevezetés Ha a mai módon és ütemben folytatjuk az energiafelhasználást, 30-40 éven belül visszafordíthatatlanul

Részletesebben

A tételhez segédeszköz nem használható.

A tételhez segédeszköz nem használható. A vizsgafeladat ismertetése: A szóbeli vizsgatevékenység központilag összeállított vizsgakérdései a szakmai és vizsgakövetelmények 4. Szakmai követelmények fejezetben megadott modulok témaköreinek mindegyikét

Részletesebben

ÉLELMISZERIPARI ISMERETEK. Cukorrépa (Beta vulgaris var. saccharifera) Dr. Varga Csaba főiskolai adjunktus

ÉLELMISZERIPARI ISMERETEK. Cukorrépa (Beta vulgaris var. saccharifera) Dr. Varga Csaba főiskolai adjunktus ÉLELMISZERIPARI ISMERETEK Cukorrépa (Beta vulgaris var. saccharifera) Dr. Varga Csaba főiskolai adjunktus Jelentősége répafej nyak váll törzs répatest farok Répatest: a levelek nélküli répanövény, melynek

Részletesebben

Új rendszerű szárítólevegő-átvezetés konstrukciós jellemzői függőleges légcsatornás gabonaszárítóban

Új rendszerű szárítólevegő-átvezetés konstrukciós jellemzői függőleges légcsatornás gabonaszárítóban Új rendszerű szárítólevegő-átvezetés konstrukciós jellemzői függőleges légcsatornás gabonaszárítóban Francsics Péter Veszprémi Egyetem, Georgikon Mezőgazdaságtudományi Kar, Agrárműszaki Tanszék Ismeretes,

Részletesebben

BBBZ kódex --------------------------------------------------------------------------------------------------------- 4.3 Hajók propulziója

BBBZ kódex --------------------------------------------------------------------------------------------------------- 4.3 Hajók propulziója 4.3 Hajók propulziója A propulzió kifejezés latin eredetű, nemzetközileg elfogadott fogalom, amely egy jármű (leginkább vízi- vagy légi-jármű) meghajtására vonatkozik. Jelentése energiaátalakítás a meghajtó

Részletesebben

VONÓELEMES HAJTÁSOK (Vázlat)

VONÓELEMES HAJTÁSOK (Vázlat) VONÓELEMES HAJTÁSOK (Vázlat) Hajtások csoportosítása Közvetlen kapcsolatú Közvetítőelemes Erővel záró hajtások Dörzskerékhajtás Szíjhajtás (laposszíj, ékszíj) Alakkal záró hajtások Fogaskerékhajtás Lánchajtás,

Részletesebben

Az iszapkezelés trendjei

Az iszapkezelés trendjei Az iszapkezelés trendjei Boda János és Dr. Patziger Miklós fólia 1 Iszapképződés Fajlagos iszapképződés Kb. 1,5 l/le*d 2 l/le*d Víztartalom 97 99% Hirtelen rothad erős szagképződéssel Kezeletlen iszap

Részletesebben

A müncheni biohulladék-erjesztő teljesítményének növelése az előkezelő és víztisztító fokozatok módosításával

A müncheni biohulladék-erjesztő teljesítményének növelése az előkezelő és víztisztító fokozatok módosításával HULLADÉKOK ENERGETIKAI ÉS BIOLÓGIAI HASZNOSÍTÁSA 8.3 A müncheni biohulladék-erjesztő teljesítményének növelése az előkezelő és víztisztító fokozatok módosításával Tárgyszavak: berendezés; biohulladék;

Részletesebben

MŰSZAKI FELTÉTELEK ASIO-MF-4-2005. AS-ASE Finombuborékos levegőztető rendszer. Kiadta: ASIO Hungária Kft. 1165 Budapest, Margit u. 114.

MŰSZAKI FELTÉTELEK ASIO-MF-4-2005. AS-ASE Finombuborékos levegőztető rendszer. Kiadta: ASIO Hungária Kft. 1165 Budapest, Margit u. 114. MŰSZAKI FELTÉTELEK AS-ASE Finombuborékos levegőztető rendszer Kiadta: ASIO Hungária Kft. 1165 Budapest, Margit u. 114. Budapest, 2005. november 1 Jelen Műszaki Feltételek (MF) tárgya az ASEKO, s.r.o. (Chromeč

Részletesebben

Szennyvíziszap- kezelési technológiák összehasonlítása

Szennyvíziszap- kezelési technológiák összehasonlítása Szennyvíziszap- kezelési technológiák összehasonlítása Hazánkban, a környező országokban és az Európai Unió más tagországaiban is komoly feladat az egyre nagyobb mennyiségben keletkező kommunális szennyvíziszap

Részletesebben

MICÉLIUM-KOMPOSZTÁLÁS FÉLÜZEMI KÍSÉRLETÉNEK KRITIKAI ÉRTÉKELÉSE. Szakdolgozat

MICÉLIUM-KOMPOSZTÁLÁS FÉLÜZEMI KÍSÉRLETÉNEK KRITIKAI ÉRTÉKELÉSE. Szakdolgozat Miskolci Egyetem Műszaki Földtudományi Kar Nyersanyagelőkészítési és Környezeti Eljárástechnikai Intézet MICÉLIUM-KOMPOSZTÁLÁS FÉLÜZEMI KÍSÉRLETÉNEK KRITIKAI ÉRTÉKELÉSE Szakdolgozat Készítette: Lohárth

Részletesebben

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA

MFI mérés BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA B1 BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR POLIMERTECHNIKA TANSZÉK MFI mérés HŐRE LÁGYULÓ MŰANYAGOK FOLYÓKÉPESSÉGÉNEK VIZSGÁLATA A JEGYZET ÉRVÉNYESSÉGÉT A TANSZÉKI WEB OLDALON

Részletesebben

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS

ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Miskolci Egyetem Bányászati és Geotechnikai Intézet Bányászati és Geotechnikai Intézeti Tanszék ACÉLÍVES (TH) ÜREGBIZTOSÍTÁS Oktatási segédlet Szerző: Dr. Somosvári Zsolt DSc professzor emeritus Szerkesztette:

Részletesebben

A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT

A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ EUROCODE SZERINT 1 ÉPÜLETEK TARTÓSZERKEZETÉNEK RÉSZEI Helyzetük

Részletesebben

HŐTERMELŐKRŐL KAZÁNOKRÓL BŐVEBBEN

HŐTERMELŐKRŐL KAZÁNOKRÓL BŐVEBBEN HŐTERMELŐKRŐL KAZÁNOKRÓL BŐVEBBEN HŐTERMELŐK Közvetlen hőtermelők olyan berendezések, amelyekben fosszilis vagy nukleáris tüzelőanyagok kötött energiájából használható hőt állítanak elő a hőfogyasztók

Részletesebben

Beépítési lehetõségek

Beépítési lehetõségek Beépítési lehetõségek Alkalmazási területek Az állati és növényi zsírokkal és olajokkal terhelt szennyvizekbõl a csatornába bocsátás elõtt a zsírokat le kell választani. Amennyiben ez nem történne meg,

Részletesebben

Villamos szakmai rendszerszemlélet II. - A földelőrendszer

Villamos szakmai rendszerszemlélet II. - A földelőrendszer Villamos szakmai rendszerszemlélet II. A földelőrendszer A villamos szakmai rendszerszemléletről szóló cikksorozat bevezető részében felsorolt rendszerelemek közül elsőként a földelőrendszert tárgyaljuk.

Részletesebben

Makó Város Önkormányzati Képviselő-testülete Makó

Makó Város Önkormányzati Képviselő-testülete Makó 1 / 6 TÁJÉKOZTATÓ Iktsz.: I. 2-390/2003. Üi.: Huszárik H. Tárgy: Tájékoztató a környezet állapotának alakulásáról Makó Város Önkormányzati Képviselő-testülete Makó Tisztelt Képviselő-testület! A környezet

Részletesebben

Hajdúnánás-Hajdúdorog szennyvízhálózatának és szennyvíztisztító telepének bővítése és korszerűsítése

Hajdúnánás-Hajdúdorog szennyvízhálózatának és szennyvíztisztító telepének bővítése és korszerűsítése ERBO-PLAN Mérnöki Szolgáltató KFT. Székhely: Gyula, Hold utca 10. Iroda: Gyula, Munkácsy Mihály utca 21. Tel/fax: 66/561-940 honlap: www.erbo-plan.hu Tervszám: 36/2014. Hajdúnánás-Hajdúdorog szennyvízhálózatának

Részletesebben

Nagy hatékonyságú megoldások a szennyvízelvezetés, szennyvízkezelés számára

Nagy hatékonyságú megoldások a szennyvízelvezetés, szennyvízkezelés számára Nagy hatékonyságú megoldások a szennyvízelvezetés, szennyvízkezelés számára Termékismertető Beruházási példaszámításokkal Pumpen Intelligenz. 1872 óta 2 A WILO a műszaki teljesítmény és hatékonyság új

Részletesebben