Fizika a gyógyítás szolgálatában

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Fizika a gyógyítás szolgálatában"

Átírás

1 Fizika a gyógyítás szolgálatában Tartalom Törté rténeti bevezetı bevezet Dr. Sükösd Csaba BME Nukleáris Technikai Intézet Gyorsí Gyorsítós diagnosztika Hagyomá Hagyományos sugá sugárterá rterápia HadronHadron-terá terápia Jövık kép 1 2 A modern fizika és az orvosi fizika kezdete A kezdet 1895 november: Rö Röntgensugá ntgensugárzá rzás Henri Becquerel (1852( ) 1896: Termé Természetes radioaktivitá dioaktivitás 1898: Rá Rádium Wilhelm Conrad Röntgen Marie Curie dolgozata 1904-ben: 1895 december: az elsı elsı átvilá tvilágítás Mintegy szá száz éve 3 α, β, γ mágneses térben Maria Skł Skłodowska Curie Pierre Curie ( ) ( ) 4

2 Elsı Elsı alkalmazá alkalmazások a rá rák kezelé kezelésében Hatalmas elı elırelé relépés... a fiziká fizikában és Orvosi diagnosztiká diagnosztikában Alapelv: A tumor helyi kezelé kezelése Sugá Sugárzá rzásos rá rákkezelé kkezelésben három alapvetı alapvetı eszkö eszköznek köszö szönhetı nhetıen: M. S. Livingston és E. Lawrence a 2525-inches ciklotronnal Részecskegyorsí szecskegyorsítók 1908: az elsı elsı kísérlet bı bırrá rrák sugá sugárzá rzásos kezelé kezelésére Franciaorszá Franciaországban ( Curiethé Curiethérapie rapie ) 5 Részecskedetektorok Szá Számítógépek Fermi GeigerGeiger-Müller szá számlá mlálója Rómában 1930: a ciklotron lé létrehozá trehozása A LawrenceLawrence-fivérek Felgyorsí Felgyorsított atommag spirá spirális pá pályá lyája Ernest Lawrence ( ) Modern ciklotron 7 John Lawrence, Ernest fivére, orvos volt Mindketten BerkeleyBerkeleyben dolgoztak Mestersé Mesterséges izotó izotóp elsı elsı alkalmazá alkalmazása orvosi diagnosztiká diagnosztikában A nukleá nukleáris medicina kezdete John Lawrence haszná ált haszn Az H. interdiszcipliná áris interdiszciplin elı örrnyezet mestersé égesen elı elıszö sz mesterssegí elıkö íti az seg 32 -t a állí llított radioaktí radioakt innová innováívció ciópt! leuké leukémia terá terápiá piájában (1936) Másolat lá látható tható a CERN Microcosm kiá kiállí llításán 6 8

3 Rádiofrekvenciá diofrekvenciás line lineáris gyorsí gyorsító protonok és ionok gyorsí gyorsítására A neutron felfedezé felfedezése 1932 (éppen 80 éve) Az atomokban elektronok keringenek Lineá Lineáris gyorsí gyorsító (linac) James Chadwick az atommag körül, ( ) λ= 1.5 m 200 MHz amely protonokból...és neutronokból áll Ernest Rutherford Neutronokkal ma taní tanítvá tványa - Izotó zotópokat állí llítanak elı elı orvosi diagnosztiká diagnosztikára és terá terápiá piára - Gyó Gyógyí gyítanak egyes rákfajtá kfajtákat 9 L. Alvarez 1946 Driftcsö Driftcsöves linac 10 CERN: linaclinac-ok és erı erıs fó fókuszá kuszálású szinkrotronok A lineá lineáris elektronelektron-gyorsí gyorsító Sigurd Varian 100 MeVMeV-es linac a CERN MikrokozmoszMikrokozmoszkiá kiállí llításán Large Hadron Collider William W. Hansen 8.5 km (7+7) TeV Russell Varian 1939: A klisztron feltalá feltalálása A kó kórhá rházak hagyomá hagyományos sugá sugárterá rterápiá piája ma is elektronelektronlinacot haszná használ ~1m A PS ben 1947 elsı elsı elektronelektron-linac 4.5 MeV and 3 GHz : BNL (USA) erı erıs fó fókuszá kuszálási si módszere a CERN ProtonProtonSzinkrotroná Szinkrotronában (PS) 12

4 A világ g mőködım gyorsítói Részecskedetektorok GYORSÍTÓTÍPUS Nagyenergiás (E >1GeV) Szinkrotronsugárz rzó Radioizotópok készk szítése se orvosi célrac Sugárter rterápiás s gyorsító Kutatógyorsítók orvosi kutatásokra Ipari alkalmazású gyorsítók Ion implanterek, felületkezelésre szolgálók TOTAL HASZNÁLATBAN (*) ~120 >100 ~200 > 7500 ~1000 ~1500 >7000 > A részecskefizikusok r "szeme" Impresszív v fejlıdés s az utóbbi néhány n ny évtizedben Geiger -Müller száml mláló ATLAS és s CMS! Létfontosságú sok orvosi alkalmazásban (*) W. Maciszewski and W. Scharf: Int. J. of Radiation Oncology, 2004 A fele orvosi alkalmazásokat szolgál Példa: sokszálas proporcionális száml mláló. Orvosdiagnosztikai alkalmazások Georges Charpak ( ) 2010), CERN-i i fizikus 1959 óta, Nobel-díj: 1992 Elkész szült 1968-ban Elindította a tisztán n elektronikus részecsker szecske-észleléstst A biológiai kutatások is alkalmazzák Nemsokára helyettesítheti theti a radiobiolr diobiológiát. A megnövekedett adatrögz gzítési sebesség g gyorsabb képalkotást (azaz kisebb sugárterhel rterhelést) és gyorsabb diagnosztikát jelent

5 A diagnosztika lényeges! l Computer Tomography (CT) Detektor-sor Mágneses atommagrezonancia (NMR) : 1945: Felix Bloch és s Edward Purcell kidolgozza az NMR-t Röntgen-csı Az elektronsőrőség g mérésem Morfológiai (alaktan) informáci ció körbe forog 17 (nemcsak protonokkal lehet!) Az atommagok két k t fontos tulajdonsága: 1 Perdület (protonokra h ) 2 Mágneses momentum 1954: Felix Bloch lett a CERN elsı fıigazgatója 18 Az MRI-szkenner SPECT = Single Photon Emission Computer Tomography Mőködése: a testbe gamma-boml bomló radioaktív izotópot visznek be, bizonyos vegyülethez kötve. k ahol a vegyület feldúsul, onnan indulnak ki a gamma-sugarak. A testbıl l kijövı gamma-sugarakkal alkotunk képetk Például: koponya rétegfelvr tegfelvételektelek A radioaktív v izotópot tartalmazó molekulák eloszlásának (sőrőségének) mérése Morfológia és/vagy metabolizmus informáci ció Sztatikus Dinamikus 19 20

6 SPECT Pozitron-Emisszi Emissziós s Tomográfia (PET) 18 F-al jelzett FDG a leggyakoribb anyag (felezési idı 110 perc) A 18 F eloszlásának mérése m 180- fokban kibocsátott fotonokkal Informáci ció: : metabolizmus Protonok ~15 MeV, ~50 µa Gamma -detektorok (Pl. BGO kristályok lyok) PET-tomogr tomográf PET-kép Ciklotron A gamma-sugarakkal való képalkotáshoz nincsenek lencsék,, ezért speciális kollimá- torokat használnak H 18 2 O vizet bombázunk protonnal 18 keltésére (p,n) reakció Hogyan mőködik? m 18 F Fluoro-Deoxy Deoxy-D-Glucose (FDG) szintézise zise Metabolizmus-mérés s PET-tel Glucose FDG FDG-t t a kórhk rházba száll llítják FDG -t t beadják k a betegnek FDG csapdába esik a sejtekben, amelyek metabolizálni lni próbálj lják. A koncentráci ciója a glükóz-metabolizmus sebességével arányos A tumorok glükóz-metabolizmusa igen aktív, forró foltok a PETképeken. A kokainfüggı agya passzívabb 23 24

7 Új j diagnosztika: : CT/PET morfológia metabolizmus David Townsend CERN: és Ronald Nutt (CTS CTI) Alkalmazás s sugárz rzásos rákkezelr kkezelésben (sugárter rterápia) Radioaktív tők bevitel elıtt Módszerek Brachiterápia pia: : Sugárforr rforrás s elhelyezése a testben Radio-immunoter immunoterápia: : Az izotópot szelektív v vektor hordozza Teleterápia pia: : Tumor bombázása külsk lsı forrású sugárz rzással Radioaktivitás s a rák r k kezelésében célzott radio-immunoter immunoterápia α részecskék k Bizmut ból leukémi miára β részecskék k Yttrium bıl gamma Cobalt ból teleterápia glioblastomára (agytumor-fajta) mély tumorra tő t bevitele Cobalt-60 (~1 MeV-es es gammák) 60 Co elıáll llítása: atomreaktorban lassú neutronokkal 27 28

8 Teleterápia röntgensugr ntgensugárral Elektron-linac linac orvosi célrac e - + target X Elektron-linac 3 GHz target 6-20 MeV [1000 x Röntgen] Elektron-linac linac kelt röntgenr ntgen-sugárzást 20'000 páciens/ p ciens/év/10 millió lakos A röntgenterápia problémája A röntgenterr ntgenterápia problémája Photons Protons Röntgennyaláb Megoldás: Sok keresztezett nyaláb Intensity Modulation Radiation Therapy (IMRT) Célterület Dózisszint Az ép p sejteket is roncsolja Nem szelektív Az egészs szséges szövetbe vitt dózis d limitál! l! Fıleg a közeli k szervek veszélyben (OAR: Organs At Risk) 9 különbk nbözı fotonnyaláb 31 32

9 Intenzitás-modul modulált lt sugárter rterápia (IMRT) Lineáris gyorsító + röntgenr ntgen-ct 3-fields IMRT Prescription Dose OR PTV Konkáv v dózistd zistérfogat is elérhet rhetı Többrétegő kollimátor, amely mozog besugárz rzás s alatt Idıig igényes (bizonyos esetekben használj lják) A kiber-kés Cyberknife: lineáris gyorsító robotkaron Könnyő 6 MV-os röntgenr ntgen- linac robotkarra szerelve Kezelés s alatti átvilágítással ellenırzik a sérülés s s helyét és a kezelés s folyamatát Pontos célzc lzás Sokmezıs besugárz rzás Több részletben r végezhetv gezhetı Kis térfogatt rfogatú tumorok kezelésére ( Agy, fej-nyak, tüdı,, hátgerinc, h lágyl gyék, ágyék) 35 36

10 Intra Operative Radiation Therapy (IORT) 2 X ray beams Csinálhatjuk még jobban? 9 X ray beams (IMRT) Elektronbesugárz rzás operáci ció alatt Elektronenergia: 3 9 MeV Dózisterhelés: s: 6 30 Gy/min Besugárz rzási idı (21 Gy): min 37 A részecskefizr szecskefizikus kus kérdk rdése: Van-e e jobb módszer m a beteg szövet besugárz rzására ra és s az egészs szséges kímélésére? k Válasz : Igen, a töltt ltött tt hadronnyaláb! 38 Fizikai alapkutatás: részecskék k azonosítása sa L3 at LEP Vissza a fizikához... Leadott energia: Bragg-cs csúcs Orvosi alkalmazás rákkezelés s hadronokkal Protonok 200 MeV 1 na Szénionok 4800 MeV 0.1 na Hadronnyaláb anyagban lassul A hadronterápia alapelve 27 cm Tumor target Bragg-cs csúcs: cs: maximális energiavesztés s tumorban Jobb igazítás s a tumor alakjához ép p szövet kímélések Töltött tt hadronok jól j l terelhetık Nehéz z ionok biológiai hatása nagyobb Találós s kérd k rdés: miért éppen proton és s szénion? 39 40

11 Röntgen- és s hadronnyaláb Dóziseloszlás: s: aktív v söpörtets rtetés Röntgen Proton vagy szénion Longitudinális síks patient Transzverz verzális síks fast slow nyaláb horizontal scanning vertical scanning beam tumour volume energy variation Új j technika, jórészt j a GSI-ben és s PSI-ben fejlesztve Protonterápi piás állvány Potenciális betegek száma 10 millió lakosra 10 M lakosra Röntgenterápia: : 20' beteg/év Study by AIRO, 2003 Italian Association for Oncological Radiotharapy Protonterápia: Röntgenkezeltek 12%-a a = 2400 beteg/év Szénion nion-kezelés s radio-rezisztens rezisztens tumorra: Röntgenkezeltek 3%-a a = 600 beteg/év TOTÁL L cca beteg/év 50 M lakosra Protonterápia: centrum Szénion nion-terápia: 1 centrum 43 44

12 The Loma Linda University Medical Center (USA) Japán: 4 proton- és s 2 szénion nion-terápiás s centrum Az elsı kórházi proton- terápi piás s centrum, ban épült napi ~160 kezelés ~1000 beteg/év WAKASA BAY PROJECT by Wakasa-Bay Energy Research Center Fukui (2002) protons ( 200 MeV) synchrotron (Hitachi) 1 h beam + 1 v beam + 1 gantry HYOGO MED CENTRE Hyogo (2001) protons ( 230 MeV) - He and C ions ( 320 MeV/u) Mitsubishi synchrotron 2 p gantries + 2 fixed p beam + 2 ion rooms carbon TSUKUBA CENTRE Ibaraki (2001) protons ( 270 MeV) synchrotron (Hitachi) 2 gantries 2 beams for research KASHIWA CENTER Chiba (1998) protons ( 235 MeV) cyclotron (IBA SHI) 2 Gantries + 1 hor. beam 45 proton linac 29 m 50 szénionos beteg HEAVY ION MEDICAL ACCELERATOR HIMAC of NIRS (1995) He and C ( 430 MeV/u) 2 synchrotrons 2 h beams + 2 v beams SHIZUOKA FACILITY Shizuoka (2002) Proton synchrotron 2 gantries + 1 h beam 2000 szénionos beteg 46 ACCEL SC ciklotron PROSCAN (PSI) Villingen (Svájc) Kisérlet OPTIS Protonterápia Krakkóban (Lengyelország) g) állvány PROTEUS ciklotron 2. állvány SC 250 MeV proton-ciklotron Új j protonos állvány 1. állvány 47 Készen van március: m Szem-radioter radioterápia protonnyalábbal Közép- Kelet-Eur Európában elsınek Proton energia: 60 MeV Terv 2014 re: Komplex hadron (proton) terápi piás központ felépítése (Eu támogatt mogatás) Proton energia: MeV 48

13 1998: kísérleti k projekt (GSI, G. Kraft) 200 beteg kezelése szénionnal Szénion nion-terápia Európában Heidelbergi Ionnyaláb-ter terápiai KözpontK Heidelbergi Egyetem kórh k rházában Ünnep nnepélyes lyes megnyitás: s: 2009 nov. 2 Terv: 1300 páciens p / év Szinkrotron: proton, szén-,, héliumh lium- és s oxigénion PET on-beam Hadronterápia gyors neutronokkal Neutron: semleges nincs Bragg-cs csúcs MeV-es es neutronok ciklotronnal (p + Be reaction) MeV-es es neutronokkal magreakció nagy helyi sugárterhel rterhelés Radio-rezisztens tumorokra (nyálmirigy, nyelv, agy) 9 központban k [pl. Orleans (F), Fermilab (USA)] Berkeley, 1938 Boron Neutron Capture Therapy (BNCT) Nehézs zség: Nehéz z elérni szelektív lokalizáci ciót t a tumorban! G.L. Locher javaslata, 1936-ban (4 évvel a n felfedezése után n!) Olyan atommagot vinni a ráksejtbe, r amely neutronbefogásra töltt ltött tt fragmentumokra hasad és így sok lokális lis energiát t szabadít t fel. 10 B izotóp p a legjobb: Van bıvenb (természetes B 20%-a) 10 B(n,α) 7 Li + 2,31 MeV energia Fragmentumai gyorsan lefékez kezıdnek (egy sejten belül) l) Jól l ismert a bór b r kémik miája 51 52

14 Konklúzi zió A részecskefizika r hatékony eszközöket ket kínál k l a többi t tudománynak, az orvostudománynak is. Betegségek gek vizsgálata, diagnosztikája és s gyógy gyítása. A megfelelı fejlesztéshez shez fizikusnak és s orvosnak együtt kell dolgoznia. A hadronterápia nagyon gyorsan fejlıdik: Protonterápia népszern pszerő és s sokan csinálj lják Szénion nion-terápia: több t helyen elkezdték k vagy tervezik Neutronterápia, BNCT: kutatási fázisbanf A részecskefizika r nemcsak szép, hasznos is. Köszönöm m a megtisztelı figyelmet! 53 54

Fizika a gyógyítás szolgálatában

Fizika a gyógyítás szolgálatában Fizika a gyógyítás szolgálatában Dr. Sükösd Csaba BME Nukleáris Technika Tanszék Források: Horváth Dezsı 2010-es cerni elıadása Saverio Braccini CERN-elıadásai Fodor János, Major Tibor, Kásler Miklós:

Részletesebben

A részecskefizika orvosi alkalmazásai

A részecskefizika orvosi alkalmazásai A részecskefizika orvosi alkalmazásai Horváth Dezső RMKI és ATOMKI Forrás: Saverio Braccini CERN-előadásai Fodor János, Major Tibor, Kásler Miklós: Korszerű sugárterápia: á teleterápia MOTESZ Magazin,

Részletesebben

A részecskefizika orvosi alkalmazásai

A részecskefizika orvosi alkalmazásai A részecskefizika orvosi alkalmazásai Horváth Dezső RMKI és ATOMKI Forrás: Saverio Braccini CERN-előadásai Fodor János, Major Tibor, Kásler Miklós: Korszerű sugárterápia: teleterápia MOTESZ Magazin, 2007/2

Részletesebben

A CERN és a gyógyítás Dr. Sükösd Csaba BME Nukleáris Technikai Intézet

A CERN és a gyógyítás Dr. Sükösd Csaba BME Nukleáris Technikai Intézet A CERN és a gyógyítás Dr. Sükösd Csaba BME Nukleáris Technikai Intézet 1 Tartalom Hogy kerül a csizma az asztalra? Történeti bevezető Orvosi diagnosztika Sugárterápia Hadron-terápia Jövőkép 2 Hogy kerül

Részletesebben

A fizika egészségünk szolgálatában

A fizika egészségünk szolgálatában A fizika egészségünk szolgálatában Tartalom Törté rténeti bevezetı bevezet BME Nukleáris Technikai Intézet Gyorsí Gyorsítós diagnosztika Hagyomá Hagyományos sugá sugárterá rterápia HadronHadron-terá terápia

Részletesebben

A CERN és a gyógyítás. Ujvári Balázs Gamma Sugársebészeti Központ Debrecen ( )

A CERN és a gyógyítás. Ujvári Balázs Gamma Sugársebészeti Központ Debrecen ( ) A CERN és a gyógyítás Ujvári Balázs Gamma Sugársebészeti Központ Debrecen (2009-2012) 1 LHC GY OR SÍTÓ CMS,ATLAS WWW,GRID DETEKTT OR SZÁMS Á ÍTÓÓ GÉP S. Van der Meer (1984) gyorsító fejlesztés G. Charpak

Részletesebben

Gamma-kamera SPECT PET

Gamma-kamera SPECT PET Gamma-kamera SPECT PET 2012.04.16. Gamma sugárzás Elektromágneses sugárzás (f>10 19 Hz, E>100keV (1.6*10-14 J), λ

Részletesebben

Dr. Fröhlich Georgina

Dr. Fröhlich Georgina Speciális teleterápi piás s technikák Dr. Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Ionizáló sugárzások a gyógyításban ELTE TTK, Budapest Bevezetés Teleterápia: - LinAc/

Részletesebben

A CERN, az LHC és a vadászat a Higgs bozon után. Genf

A CERN, az LHC és a vadászat a Higgs bozon után. Genf A CERN, az LHC és a vadászat a Higgs bozon után Genf European Organization for Nuclear Research 20 tagállam (Magyarország 1992 óta) CERN küldetése: on ati uc Ed on Alapítva 1954-ben Inn ov ati CERN uniting

Részletesebben

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei?

Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Milyen eszközökkel figyelhetők meg a világ legkisebb alkotórészei? Veres Gábor ELTE Fizikai Intézet Atomfizikai Tanszék e-mail: vg@ludens.elte.hu Az atomoktól a csillagokig előadássorozat nem csak középiskolásoknak

Részletesebben

Nehézion ütközések az európai Szupergyorsítóban

Nehézion ütközések az európai Szupergyorsítóban Nehézion ütközések az európai Szupergyorsítóban Lévai Péter MTA KFKI RMKI Részecske- és Magfizikai Kutatóintézet Az atomoktól a csillagokig ELTE, 2008. márc. 27. 17.00 Tartalomjegyzék: 1. Mik azok a nehézionok?

Részletesebben

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat.

töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival ütközve megváltozhat. Néhány szó a neutronról Különböző részecskék, úgymint fotonok, neutronok, elektronok és más, töltéssel rendelkező vagy semleges részecskék kinetikus energiája és (vagy) impulzusa a kondenzált közegek atomjaival

Részletesebben

2011.11.07. Biofizika és orvostechnika alapjai

2011.11.07. Biofizika és orvostechnika alapjai Áttekintés Biofizika és orvostechnika alapjai Magátalakulások közben keletkező sugárzással alkotunk képet Képalkotás 3 A szervek működéséről, azaz a funkcióról nyújt információt Nukleáris képalkotás Szerkesztette:

Részletesebben

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa.

Környezetgazdálkodás. 1868-ban gépészmérnöki diplomát szerzett. 2016.04.11. Dr. Horváth Márk. 1901-ben ő lett az első Fizikai Nobel-díj tulajdonosa. 2016.04.11. Környezetgazdálkodás Dr. Horváth Márk https://nuclearfree.files.wordpress.com/2011/10/radiation-worker_no-background.jpg 1868-ban gépészmérnöki diplomát szerzett. 1901-ben ő lett az első Fizikai

Részletesebben

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu

Sugárzások kölcsönhatása az anyaggal. Dr. Vincze Árpád vincze@oah.hu Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag

Részletesebben

Gyorsítók a részecskefizikában

Gyorsítók a részecskefizikában Gyorsítók a részecskefizikában Vesztergombi György CERN-HST2006 Genf, 2006, augusztus 20-25. Bevezetés a kísérleti részecskefizikába Ha valaki látott már közelrõl egy modern nagyenergiájú részecskegyorsítót,

Részletesebben

Az ATOMKI ESS programja

Az ATOMKI ESS programja Az ATOMKI ESS programja Fenyvesi András Magyar Tudományos Akadémia Atommagkutató Intézet Ciklotron Osztály Az ATOMKI fıbb céljai Debrecen és az ESS segítése a projekt megvalósításában már a legelsı fázistól

Részletesebben

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8.

Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. Fizikaverseny, Döntő, Elméleti forduló 2013. február 8. 1. feladat: Az elszökő hélium Több helyen hallhattuk, olvashattuk az alábbit: A hélium kis móltömege miatt elszökik a Föld gravitációs teréből. Ennek

Részletesebben

II./3.4. fejezet: Daganatos betegségek sugárkezelésének alapelvei

II./3.4. fejezet: Daganatos betegségek sugárkezelésének alapelvei II./3.4. fejezet: Daganatos betegségek sugárkezelésének alapelvei Hideghéty Katalin A fejezet célja, hogy a hallgató megismerkedjen a sugárkezelés általános alapelveivel, és rálátást szerezzen a különböző

Részletesebben

A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise

A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise A CERN NA61 kísérlet kisimpulzusú részecskedetektorának építése és fizikai analízise MSc Diplomamunka Márton Krisztina Fizikus MSc II. ELTE TTK Témavezető: dr. Varga Dezső ELTE TTK Komplex Rendszerek Fizikája

Részletesebben

Az atommag története

Az atommag története Az atommag története Polcz Péter PPKE Információs Technológiai Kar 1083 Budapest, Práter utca 50/a 2010. december 6. Az atommag felfedezése Az első atommag szerkezetének első kutatói, Ernest Rutherford,

Részletesebben

A testek részecskéinek szerkezete

A testek részecskéinek szerkezete A testek részecskéinek szerkezete Minden test részecskékből, atomokból vagy több atomból álló molekulákból épül fel. Az atomok is összetettek: elektronok, protonok és neutronok találhatók bennük. Az elektronok

Részletesebben

Atommag, atommag átalakulások, radioaktivitás

Atommag, atommag átalakulások, radioaktivitás Atommag, atommag átalakulások, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron

Részletesebben

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára

EGÉSZTESTSZÁMLÁLÁS. Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára EGÉSZTESTSZÁMLÁLÁS Mérésleírás Nukleáris környezetvédelem gyakorlat környezetmérnök hallgatók számára Zagyvai Péter - Osváth Szabolcs Bódizs Dénes BME NTI, 2008 1. Bevezetés Az izotópok stabilak vagy radioaktívak

Részletesebben

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete

Magfizika. (Vázlat) 2. Az atommag jellemzői Az atommagok rendszáma Az atommagok tömegszáma Izotópok és szétválasztásuk Az atommagok mérete Magfizika (Vázlat) 1. Az atommaggal kapcsolatos ismeretek kialakulásának történeti áttekintése a) A természetes radioaktivitás felfedezése b) Mesterséges atommag-átalakítás Proton felfedezése Neutron felfedezése

Részletesebben

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997

NEUTRON-DETEKTOROK VIZSGÁLATA. Mérési útmutató BME NTI 1997 NEUTRON-DETEKTOROK VIZSGÁLATA Mérési útmutató Gyurkócza Csaba, Balázs László BME NTI 1997 Tartalomjegyzék 1. Bevezetés 3. 2. Elméleti összefoglalás 3. 2.1. A neutrondetektoroknál alkalmazható legfontosabb

Részletesebben

laboratóriumban - Mágneses Nap a Zoletnik Sándor Magyar Euratom Fúziós Szövetség mki.kfki.hu zoletnik@rm KFKI-RMKI Magyar Euratom Fúziós Szövetség

laboratóriumban - Mágneses Nap a Zoletnik Sándor Magyar Euratom Fúziós Szövetség mki.kfki.hu zoletnik@rm KFKI-RMKI Magyar Euratom Fúziós Szövetség Mágneses Nap a laboratóriumban - szabályozott mag gfúziós kutatások Zoletnik Sándor KFKI-Részecske- és Magfizikai Kutatóintézet Magyar Euratom Fúziós Szövetség zoletnik@rm mki.kfki.hu KFKI-RMKI Magyar

Részletesebben

Képrekonstrukció 2. előadás

Képrekonstrukció 2. előadás Képrekonstrukció 2. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika tanszék Szegedi Tudományegyetem Az atomszerkezet Atommag (nukleusz): {protonok (poz. töltés) és neutronok} = nukleonok Keringő

Részletesebben

A Nukleáris Medicina alapjai

A Nukleáris Medicina alapjai A Nukleáris Medicina alapjai Szegedi Tudományegyetem Nukleáris Medicina Intézet Történet 1. 1896 Henri Becquerel titokzatos sugár (Urán) 1897 Marie and Pierre Curie - radioaktivitás 1901-1914 Rádium terápia

Részletesebben

Biofizika tesztkérdések

Biofizika tesztkérdések Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!

Részletesebben

Fizika 2 (Modern fizika szemlélete) feladatsor

Fizika 2 (Modern fizika szemlélete) feladatsor Fizika 2 (Modern fizika szemlélete) feladatsor 1. Speciális relativitáselmélet 1. A Majmok bolygója című mozifilm és könyv szerint hibernált asztronauták a Föld távoli jövőjébe utaznak, amikorra az emberi

Részletesebben

Hadronok, atommagok, kvarkok

Hadronok, atommagok, kvarkok Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford

Részletesebben

Tamás Ferenc: Természetes radioaktivitás és hatásai

Tamás Ferenc: Természetes radioaktivitás és hatásai Tamás Ferenc: Természetes radioaktivitás és hatásai A radioaktivitás a nem stabil magú atomok (más néven: radioaktív) természetes úton való elbomlása. Ez a bomlás igen nagy energiájú ionizáló sugárzást

Részletesebben

Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk?

Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk? Miből áll a világunk? Honnan származik? Miért olyan, mint amilyennek látjuk? Jóllehet ezeket a kérdéseket még nem tudjuk teljes bizonyossággal megválaszolni, ám az utóbbi években nagyon sokmindent felfedeztünk

Részletesebben

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3.

Részecske- és magfizikai detektorok. Atommag és részecskefizika 9. előadás 2011. május 3. Részecske- és magfizikai detektorok Atommag és részecskefizika 9. előadás 2011. május 3. Detektorok csoportosítása Tematika Gáztöltésű detektorok, ionizációs kamra, proporcionális kamra, GM-cső működése,

Részletesebben

Részecskefizikai gyorsítók

Részecskefizikai gyorsítók Részecskefizikai gyorsítók 2010.12.09. Kísérleti mag- és részecskefizikai szeminárium Márton Krisztina Hogyan látunk különböző méreteket? 2 A működés alapelve az elektromos tér gyorsítja a részecskét különböző

Részletesebben

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT.

A HÚZÓSOK NYOMTASSÁK KI ÉS HOZZÁK MAGUKKAL A RÁJUK VONATKOZÓ TÉTELEKET. A KIHÚZOTT TÉTELT (CSAK AZT) MAGUKNÁL TARTHATJÁK A FELKÉSZÜLÉS ALATT. T&T tematika & tételek A magkémia alapjai, kv1n1mg1 (A) A magkémia alapjai tárgykiegészítés, kv1n1mgx (X) című, ill. kódú integrált előadáshoz http://www.chem.elte.hu/sandor.nagy/okt/amka/index.html Bevezető

Részletesebben

Radioaktivitás. 9.2 fejezet

Radioaktivitás. 9.2 fejezet Radioaktivitás 9.2 fejezet A bomlási törvény Bomlási folyamat alapjai: Értelmezés (bomlás): Azt a magfizikai folyamatot, amely során nagy tömegszámú atommagok spontán módon, azaz véletlenszerűen (statisztikailag)

Részletesebben

Részecskefizika és az LHC: Válasz a kérdésekre

Részecskefizika és az LHC: Válasz a kérdésekre Horváth Dezső: Részecskefizika és az LHC Leövey Gimnázium, 2012.06.11. p. 1/28 Részecskefizika és az LHC: Válasz a kérdésekre TÁMOP-szeminárium, Leövey Klára Gimnázium, Budapest, 2012.06.11 Horváth Dezső

Részletesebben

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás

Röntgensugárzás 9/21/2014. Röntgen sugárzás keltése: Röntgen katódsugárcső. Röntgensugárzás keletkezése Tulajdonságok Anyaggal való kölcsönhatás 9/1/014 Röntgen Röntgen keletkezése Tulajdonságok Anyaggal való kölcsönhatás Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken on December 1895 and presented

Részletesebben

Mikrokozmosz - makrokozmosz: hova lett az antianyag?

Mikrokozmosz - makrokozmosz: hova lett az antianyag? Horváth Dezső: Antianyag Trefort gimn, 2013.02.28 1. fólia p. 1/39 Mikrokozmosz - makrokozmosz: hova lett az antianyag? Horváth Dezső horvath wigner.mta.hu MTA Wigner Fizikai Kutatóközpont, Budapest és

Részletesebben

Rutherford-féle atommodell

Rutherford-féle atommodell Rutherfordféle atommodell Manchesteri Egyetem 1909 1911 Hans Geiger, Ernest Marsden Ernest Rutherford vezetésével Az arany szerkezetének felderítésére irányuló szóráskísérletek Alfarészecskékkel bombáztak

Részletesebben

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám

Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga

Részletesebben

Ph 11 1. 2. Mozgás mágneses térben

Ph 11 1. 2. Mozgás mágneses térben Bajor fizika érettségi feladatok (Tervezet G8 2011-től) Munkaidő: 180 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia. A két feladatsor nem származhat azonos témakörből.)

Részletesebben

Újszülöttkori izotópdiagnosztika 2011 SE I. Gyermekklinika Dr. Bártfai Katalin Rövid történeti áttekintés A radioaktivitás felfedezése: Bequerel 1885 Radioaktív anyagok nyomjelzőként való Felhasználása:

Részletesebben

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat)

SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA. (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) SE Bővített fokozatú sugárvédelmi tanfolyam, 2005 márc. 21-24 IONIZÁLÓ SUGÁRZÁSOK DOZIMETRIÁJA (Dr. Kanyár Béla, SE Sugárvédelmi Szolgálat) A sugárzások a károsító hatásuk mértékének megítélése szempontjából

Részletesebben

PET Pozitronemissziós tomográfia

PET Pozitronemissziós tomográfia PET Pozitronemissziós tomográfia Nagy Mária PET 1 Tartalom Bevezetés Miért fontos és hasznos az EP annihiláció? Képalkotás, mint szerkezetvizsgáló módszer A gamma szcintillációs vizsgálatok elve SPECT-módszer

Részletesebben

NUKLEÁRIS MEDICINA DEFINÍCIÓ. Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 RADIOIZOTÓPOK A MEDICINÁBAN HEVESY GYÖRGY

NUKLEÁRIS MEDICINA DEFINÍCIÓ. Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 RADIOIZOTÓPOK A MEDICINÁBAN HEVESY GYÖRGY DEFINÍCIÓ NUKLEÁRIS MEDICINA Szilvási István SE ÁOK Nukleáris Medicina Tanszék és Honvédkórház 2013 Nyílt radioaktív izotópokkal végzett diagnosztikai terápiás kutató orvosi tevékenység ( Zárt : brachyterápia)

Részletesebben

F1404 ATOMMAG- és RÉSZECSKEFIZIKA

F1404 ATOMMAG- és RÉSZECSKEFIZIKA F1404 ATOMMAG- és RÉSZECSKEFIZIKA Dr. Raics Péter DE TTK Kísérleti Fizikai Tanszék, Debrecen, Bem tér 18/A RAICS@TIGRIS.KLTE.HU Ajánlott irodalom Raics P.: Atommag- és részecskefizika. Jegyzet. DE Kísérleti

Részletesebben

1. Bevezetés. 2. Az elért eredmények. 2.1. A 60 Cu radioizotóp termelése

1. Bevezetés. 2. Az elért eredmények. 2.1. A 60 Cu radioizotóp termelése Szakmai beszámoló az Új réz és mangán radioizotópok Pozitron Emissziós Tomográf (PET) vizsgálatokhoz című OTKA kutatás keretében végzett munkáról és az elért eredményekről (2002-2005) 1. Bevezetés Az utóbbi

Részletesebben

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II.

KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. KOVÁCS ENDRe, PARIpÁS BÉLA, FIZIkA II. 12 A MODERN FIZIKa ELEMEI XII. MAGfIZIkA ÉS RADIOAkTIVITÁS 1. AZ ATOmmAG Rutherford (1911) arra a következtetésre jutott, hogy az atom pozitív töltését hordozó anyag

Részletesebben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben

Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),

Részletesebben

A nagyenergiás neutrínók. fizikája és asztrofizikája

A nagyenergiás neutrínók. fizikája és asztrofizikája Ortvay Kollokvium Marx György Emlékelőadás A nagyenergiás neutrínók és kozmikus sugarak fizikája és asztrofizikája Mészáros Péter Pennsylvania State University A neutrinónak tömege van: labor mérésekből,

Részletesebben

2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton?

2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton? GYAKORLÓ FELADATOK 1. Számítsd ki egyetlen szénatom tömegét! 2. Melyik az, az elem, amelynek harmadik leggyakoribb izotópjában kétszer annyi neutron van, mint proton? 3. Mi történik, ha megváltozik egy

Részletesebben

KOZMIKUS SUGÁRZÁS EXTRÉM ENERGIÁKON I. RÉSZ

KOZMIKUS SUGÁRZÁS EXTRÉM ENERGIÁKON I. RÉSZ is elôírt fizikai ismeretek tárgyalásától. Ez a kihívás indította el az orvosi irányultságú fizika/biofizika oktatását Budapesten. Tarján professzor több mint 30 éven keresztül állt a katedrán és ez alatt

Részletesebben

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció

L Ph 1. Az Egyenlítő fölötti közelítőleg homogén földi mágneses térben a proton (a mágneses indukció A 2008-as bajor fizika érettségi feladatok (Leistungskurs) Munkaidő: 240 perc (A vizsgázónak két, a szakbizottság által kiválasztott feladatsort kell kidolgoznia) L Ph 1 1. Kozmikus részecskék mozgása

Részletesebben

A részecskefizika kísérleti eszközei

A részecskefizika kísérleti eszközei A részecskefizika kísérleti eszközei (Gyorsítók és Detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mit kell/lehet mérni egy részecskén? miben különböznek? hogyan és mit mérünk? Részecskegyorsítók, CERN

Részletesebben

Nagy Sándor: Magkémia

Nagy Sándor: Magkémia Nagy Sándor: Magkémia (kv1c1mg1) 07. Stabilitás & instabilitás, magmodellek, tömegparabolák Nagy Sándor honlapja ismeretterjesztő anyagokkal: http://nagysandor.eu/ A Magkémia tantárgy weboldala: http://nagysandor.eu/magkemia/

Részletesebben

4. A nukleá ris mediciná fizikái álápjái

4. A nukleá ris mediciná fizikái álápjái 4. A nukleá ris mediciná fizikái álápjái A fotonok nagy áthatolóképessége lehetővé teszi, hogy kívülről megnézzük, mi van a testen belül, a különböző anyagok radioaktív izotóppal való megjelölése pedig

Részletesebben

Sugárzásmérés. PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN

Sugárzásmérés. PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Sugárzásmérés Forrás és irodalom Lambert Miklós: Szenzorok elmélet (ISBN 978-963-874001-1-3) Bp. 2009 Jacob Fraden: Handbook of Modern Sensors (ISBN

Részletesebben

Diagnosztikai röntgen képalkotás, CT

Diagnosztikai röntgen képalkotás, CT Diagnosztikai röntgen képalkotás, CT ALAPELVEK A röntgenkép a röntgensugárzással átvilágított test árnyéka. A detektor vagy film az áthaladó, azaz nem elnyelt sugarakat érzékeli. A képen az elnyelő tárgyaknak

Részletesebben

Detektorok. Fodor Zoltán. Wigner fizikai Kutatóközpont. Hungarian Teachers Programme 2015

Detektorok. Fodor Zoltán. Wigner fizikai Kutatóközpont. Hungarian Teachers Programme 2015 Detektorok Fodor Zoltán Wigner fizikai Kutatóközpont Hungarian Teachers Programme 2015 Mi is a kisérleti fizika HTP 2015 Detektorok, Fodor Zoltán 2 A természetben is lejátszodó eseményeket ismételjük meg

Részletesebben

Megmérjük a láthatatlant

Megmérjük a láthatatlant Megmérjük a láthatatlant (részecskefizikai detektorok) Hamar Gergő MTA Wigner FK 1 Tartalom Mik azok a részecskék? mennyi van belőlük? miben különböznek? Részecskegyorsítók, CERN mire jó a gyorsító? hogy

Részletesebben

TÜDİRÁKOK ONKOLÓGIÁJA

TÜDİRÁKOK ONKOLÓGIÁJA TÜDİRÁKOK ONKOLÓGIÁJA Dr. Maráz Anikó Szegedi Tudományegyetem Onkoterápiás Klinika 2012. november 14. Daganatos halálozás Európában, 1955-2015 Daganatos betegségek incidenciája /WHO, 2006/ Tüdı 1 200 000

Részletesebben

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?

I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig

Részletesebben

Mikrostruktúrás gáztöltésű detektorok vizsgálata. Szakdolgozat

Mikrostruktúrás gáztöltésű detektorok vizsgálata. Szakdolgozat Mikrostruktúrás gáztöltésű detektorok vizsgálata Szakdolgozat Készítette: Bódog Ferenc Fizika BSc. szakos hallgató Témavezetők: dr. Varga Dezső egyetemi adjunktus ELTE TTK Komplex Rendszerek Fizikája Tanszék

Részletesebben

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől

Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől Az Orvosi Fizika Szigorlat menete a 2012/2. tanévtől 1. A szigorlat menete A szigorlatot a Fizikus MSc orvosi fizika szakirányos hallgatók a második vagy harmadik szemeszterük folyamán tehetik le. A szigorlat

Részletesebben

A fizikaoktatás jövője a felsőfokú alapképzésben

A fizikaoktatás jövője a felsőfokú alapképzésben A fizikaoktatás jövője a felsőfokú alapképzésben Radnóti Katalin ELTE TTK Fizikai Intézet Főiskolai tanár rad8012@helka.iif.hu http://members.iif.hu/rad8012/ Békéscsaba 2010. augusztus 26. Az előadásban

Részletesebben

Atomfizika a gyászatban

Atomfizika a gyászatban Atomfizika a gyógy gyászatban - Sugárter rterápia Fröhlich Georgina Országos Onkológiai Intézet Sugárterápiás Központ Budapest Nov. 8. Sugárterápia - Az egyik fő modalitás a daganatok kezelésében (+kemo,

Részletesebben

A bór neutron befogásán alapuló sugárterápia hatékonysága az elpusztítandó áttétek méretének függvényében

A bór neutron befogásán alapuló sugárterápia hatékonysága az elpusztítandó áttétek méretének függvényében A bór neutron befogásán alapuló sugárterápia hatékonysága az elpusztítandó áttétek méretének függvényében Madas Balázs Gergely*, Balásházy Imre, Farkas Árpád Magyar Tudományos Akadémia KFKI Atomenergia

Részletesebben

A FIZIKUS SZEREPE A DAGANATOS BETEGEK GYÓGYÍTÁSÁBAN

A FIZIKUS SZEREPE A DAGANATOS BETEGEK GYÓGYÍTÁSÁBAN A FIZIKUS SZEREPE A DAGANATOS BETEGEK GYÓGYÍTÁSÁBAN Balogh Éva Jósa András Megyei Kórház, Onkoradiológiai Osztály, Nyíregyháza Angeli István Debreceni Egyetem, Kísérleti Fizika Tanszék A civilizációs ártalmaknak,

Részletesebben

BMEEOVKAI09 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése

BMEEOVKAI09 segédlet a BME Építőmérnöki Kar hallgatói részére. Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése 1 EURÓPAI UNIÓ STRUKTURÁLIS ALAPOK Az építész- és az építőmérnök képzés szerkezeti és tartalmi fejlesztése HEFOP/2004/3.3.1/0001.01 V Í Z É S K Ö R N Y E Z E T I BMEEOVKAI09 segédlet a BME Építőmérnöki

Részletesebben

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.)

A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla. 7. Előadás (2015.10.29.) A fizika története (GEFIT555-B, GEFIT555B, 2+0, 2 kredit) 2015/2016. tanév, 1. félév Dr. Paripás Béla 7. Előadás (2015.10.29.) Az atomelmélet fejlődése (folyt.) 1, az anyag atomos szerkezetének bizonyítása

Részletesebben

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL

A RÉSZECSKEFIZIKA ANYAGELMÉLETE: A STANDARD MODELL tartozó valószínûség -hez, a többi nullához tart. A most vizsgált esetben (M M = 0) a (0) szerint valóban ennekkell történnie. Teljesen hasonlóan igazolható (0) helyessége akkor is, amikor k = n. A közbensô

Részletesebben

HÍREK ITTHONRÓL. Fizika Tanösvény az Eötvös Egyetemen HÍREK ESEMÉNYEK

HÍREK ITTHONRÓL. Fizika Tanösvény az Eötvös Egyetemen HÍREK ESEMÉNYEK HÍREK ESEMÉNYEK HÍREK ITTHONRÓL Fizika Tanösvény az Eötvös Egyetemen Az ELTE TTK Fizikai Intézete új Tanösvényt alakított ki a Lágymányosi Tömb északi épületében. A programot elsôsorban középiskolás osztályoknak

Részletesebben

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása

Nehéz töltött részecskék (pl. α-sugárzás) kölcsönhatása Az ionizáló sugárzások kölcsönhatása anyaggal, nehéz és könnyű töltött részek kölcsönhatása, röntgen és γ-sugárzás kölcsönhatása Az ionizáló sugárzások mérése, gáztöltésű detektorok (ionizációs kamra,

Részletesebben

Az LHC kísérleteinek helyzete

Az LHC kísérleteinek helyzete Az LHC kísérleteinek helyzete 2012 nyarán Csörgő Tamás fizikus MTA Wigner Fizikai Kutatóközpont Részecske és Magfizikai Intézet, Budapest 7 (vagy 6?) LHC kísérlet ALICE ATLAS CMS LHCb LHCf MoEDAL TOTEM

Részletesebben

1. tesztlap. Fizikát elsı évben tanulók számára

1. tesztlap. Fizikát elsı évben tanulók számára 1. tesztlap Fizikát elsı évben tanulók számára 1.) Egy fékezı vonatban menetiránynak megfelelıen ülve feldobunk egy labdát. Hová esik vissza? A) Éppen a kezünkbe. B) Elénk C) Mögénk. D) Attól függ, milyen

Részletesebben

1. A röntgensugárral nyert interferencia kép esetében milyen esetben beszélünk szórásról és milyen esetben beszélünk diffrakcióról?

1. A röntgensugárral nyert interferencia kép esetében milyen esetben beszélünk szórásról és milyen esetben beszélünk diffrakcióról? 1. A röntgensugárral nyert interferencia kép esetében milyen esetben beszélünk szórásról és milyen esetben beszélünk diffrakcióról? Intenzitás Nincs rács, amibe rendeződnek a részecskék Szórás, azaz lecsengő

Részletesebben

Részecskegyorsítók. Barna Dániel. University of Tokyo Wigner Fizikai Kutatóközpont

Részecskegyorsítók. Barna Dániel. University of Tokyo Wigner Fizikai Kutatóközpont Részecskegyorsítók Barna Dániel University of Tokyo Wigner Fizikai Kutatóközpont Részecskegyorsítók a háztartásban Töltött részecskék manipulálása Miért akarunk nagyenergiás gyorsítókat? A klasszikus nagyenergiás

Részletesebben

Hibrid módszerek m SPECT/CT, PET/CT. Pécsi Tudományegyetem Nukleáris Medicina Intézet

Hibrid módszerek m SPECT/CT, PET/CT. Pécsi Tudományegyetem Nukleáris Medicina Intézet Hibrid módszerek m a nukleáris medicinában: SPECT/CT, PET/CT Zámbó Katalin Pécsi Tudományegyetem Nukleáris Medicina Intézet Képalkotó módszerek Protonszám = rendszám Protonszám + neutronszám = tömegszám

Részletesebben

VÁLASZ DR. JULOW JENİ TANÁR ÚR, AZ MTA DOKTORA OPPONENSI VÉLEMÉNYÉRE. Tisztelt Julow Jenı Tanár Úr!

VÁLASZ DR. JULOW JENİ TANÁR ÚR, AZ MTA DOKTORA OPPONENSI VÉLEMÉNYÉRE. Tisztelt Julow Jenı Tanár Úr! 1 VÁLASZ DR. JULOW JENİ TANÁR ÚR, AZ MTA DOKTORA OPPONENSI VÉLEMÉNYÉRE Tisztelt Julow Jenı Tanár Úr! Köszönöm Dr. Julow Jenı Tanár Úr részletes, minden szempontra kiterjedı opponensi véleményezését, megtisztelı,

Részletesebben

1. A környezeti sugárzásokról (rövid emlékeztető)

1. A környezeti sugárzásokról (rövid emlékeztető) III. SUGÁRZÁSOK KÖRNYEZETÜNKBEN 1. A környezeti sugárzásokról (rövid emlékeztető) 1.1. Az elektromágneses sugárzások 1.2. Radioaktivitás a természetben, kozmikus sugárzás, mesterséges radioaktivitás 2.

Részletesebben

CERN: a szubatomi részecskék kutatásának európai központja

CERN: a szubatomi részecskék kutatásának európai központja CERN: a szubatomi részecskék kutatásának európai központja 1954-ben alapította 12 ország Ma 20 tagország 2007-ben több mint 9000 felhasználó (9133 user ) ~1 GCHF éves költségvetés (0,85%-a magyar Ft) Az

Részletesebben

Az elektromágneses spektrum

Az elektromágneses spektrum IR Az elektromágneses spektrum V Hamis színes felvételek Elektromágnes hullámok Jellemzők: Amplitúdó Hullámhossz E ~ A 2 / λ 2 Információ ~ 1/λ UV Összeállította: Juhász Tibor 2008 Függ a közegtől Légüres

Részletesebben

Fodor Zoltán KFKI-Részecske és Magfizikai. 2007 Aug. 17, HTP-2007 Fodor Z. Bevezetés a nehézion fizikába 1

Fodor Zoltán KFKI-Részecske és Magfizikai. 2007 Aug. 17, HTP-2007 Fodor Z. Bevezetés a nehézion fizikába 1 Bevezetés a nehézion fizikába Fodor Zoltán KFKI-Részecske és Magfizikai Kutató Intézet 2007 Aug. 17, HTP-2007 Fodor Z. Bevezetés a nehézion fizikába 1 A világmindenség fejlődése A Nagy Bummnál minden anyag

Részletesebben

Modern, képvezérelt sugárterápiás technikák alkalmazásának költséghatékonysági értékelése prosztatarákos betegeknél

Modern, képvezérelt sugárterápiás technikák alkalmazásának költséghatékonysági értékelése prosztatarákos betegeknél Modern, képvezérelt sugárterápiás technikák alkalmazásának költséghatékonysági értékelése prosztatarákos betegeknél Zemplényi Antal Tamás 1, Dr. Mangel László 2 1. Pécsi Tudományegyetem, Gazdasági Főigazgatóság

Részletesebben

Szupernova avagy a felrobbanó hűtőgép

Szupernova avagy a felrobbanó hűtőgép Szupernova avagy a felrobbanó hűtőgép (a csillagok termodinamikája 3.) Az atomoktól a csillagokig Dávid Gyula 2013. 09. 19. 1 Szupernova avagy a felrobbanó hűtőgép (a csillagok termodinamikája 3.) Az atomoktól

Részletesebben

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA ÉRETTSÉGI VIZSGA 2014. május 19. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2014. május 19. 8:00 Az írásbeli vizsga időtartama: 120 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fizika

Részletesebben

Az atombomba története

Az atombomba története Az atombomba története Szegedi Péter TTK Tudománytörténet és Tudományfilozófia Tanszék Déli Tömb 1-111-es szoba 372-2990 vagy 6670-es mellék pszegedi@caesar.elte.hu és http://hps.elte.hu Tematika 1. A

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Budapest, 2010. december 3-4.

Budapest, 2010. december 3-4. Mócsy Ildikó A természettudomány A természettudomány szakágazatai: - alap tudományok: fizika kémia biológia földtudományok csillagászat - alkalmazott tudományok: mérnöki mezőgazdaság orvostudomány - matematika,

Részletesebben

Koch Zita BSc 4. évfolyam

Koch Zita BSc 4. évfolyam TDK 2011 Koch Zita BSc 4. évfolyam Témavezető: Dr. Fröhlich Georgina, Dr. Major Tibor Országos Onkológiai Intézet - Sugárterápiás Osztály Belső konzulens: Dr. Pesznyák Csilla BME - Nukleáris Technika Tanszék

Részletesebben

Bevezetés a részecskefizikába

Bevezetés a részecskefizikába Horváth Dezső: Bevezetés a részecskefizikába II: Higgs CERN, 2014. augusztus 19. p. 1 Bevezetés a részecskefizikába Előadássorozat fizikatanárok részére (CERN, 2014 aug. 19.) (Pásztor Gabriella helyett)

Részletesebben

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.

Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez. Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem

Részletesebben

A pozitron emissziós tomográfia (PET) egészségügyi technológiai elemzése

A pozitron emissziós tomográfia (PET) egészségügyi technológiai elemzése A pozitron emissziós tomográfia (PET) egészségügyi technológiai elemzése Jelen összefoglaló az Egészségügyi Stratégiai Kutatóintézet (ESKI) Egészségügyi technológia-értékelése alapján készült, publikálására

Részletesebben

GÁZTÖLTÉSŰ RÉSZECSKEDETEKTOROK ÉPÍTÉSE CONSTRUCTION OF GASEOUS PARTICLE DETECTORS

GÁZTÖLTÉSŰ RÉSZECSKEDETEKTOROK ÉPÍTÉSE CONSTRUCTION OF GASEOUS PARTICLE DETECTORS GÁZTÖLTÉSŰ RÉSZECSKEDETEKTOROK ÉPÍTÉSE CONSTRUCTION OF GASEOUS PARTICLE DETECTORS Bagoly Zsolt 1, Barnaföldi Gergely Gábor 2, Bencédi Gyula 2, Bencze György 2 Dénes Ervin 2, Fodor Zoltán 2, Hamar Gergő

Részletesebben

Bevezetés; Anyag és Energia; Az atomok szerkezete I.

Bevezetés; Anyag és Energia; Az atomok szerkezete I. Bevezetés; Anyag és Energia; Az atomok szerkezete I. Műszaki kémia, Anyagtan I. 1-2. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Az általános kémia tárgya az anyag tulajdonságainak

Részletesebben

Új PET radioizotópok in-vivo génexpressziós vizsgálatokhoz

Új PET radioizotópok in-vivo génexpressziós vizsgálatokhoz Új PET radioizotópok in-vivo génexpressziós vizsgálatokhoz Szakmai beszámoló az OTKA kutatás keretében végzett munkákról és az elért eredményekrl (2006-2010) 1. Bevezetés Az utóbbi évek egyik ígéretes

Részletesebben

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés.

9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. Aktivitás mérés. 9. Radioaktív sugárzás mérése Geiger-Müller-csővel. Preparátum helyének meghatározása. ktivitás mérés. MÉRÉS CÉLJ: Megismerkedni a radioaktív sugárzás jellemzésére szolgáló mértékegységekkel, és a sugárzás

Részletesebben