Zaj,- rezgés és sugárzásvédelem LGB_KM015_ tanév tavasz 1. előadás

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Zaj,- rezgés és sugárzásvédelem LGB_KM015_1 2014 2015. tanév tavasz 1. előadás"

Átírás

1 Zaj,- rezgés és sugárzásvédelem LGB_KM015_ tanév tavasz 1. előadás Bedő Anett egyetemi tanársegéd SZE, MTK, BGÉKI, Környezetmérnöki tanszék

2 ELÉRHETŐSÉG Szoba: D 512 Telefonszám: 96/ / bedoa@sze.hu Weblap: Konzultációs időpont: hétfő:

3 KÖVETELMÉNYEK Zaj, rezgés Félévközi beszámoló 1 db zh május 9.: 60 pont Minimum követelmény 40 % Zajmérés: május 9. mindkettő kötelező, aláírás feltétele Megajánlott jegy kapható Zh-ból 60 %-ot elérte Vizsga (írásbeli) 6 kérdés (60 pont) Zaj + sugár = 100 pont

4 ÉRTÉKELÉS Értékelés:

5 AJÁNLOTT IRODALOM Zaj és rezgésvédelem Hefop jegyzet a honlapomon megtalálják Walz Géza: Zaj- és rezgésvédelem, Complex Kiadó, Bp Dr. Kurutz Imre: Műszaki akusztika, Műegyetemi Kiadó, Bp Dr. Kováts Attila: Zaj- és rezgésvédelem, Veszprémi Kiadó, Veszprém, 1995.

6 ELŐADÁS ANYAGA Bevezetés Hang Hullám Fizikai alapfogalmak Szintértékek Hallás folyamata Spektrum Színkép Műveletek szintekkel Hangosság Példák

7 IDÉZET A zajjal száz esztendő múlva több gondunk lesz, mint a fertőző betegségekkel Robert Koch (német bakteriológus)

8 BEVEZETÉS A zaj egyidős az emberrel (ipai forradalom, közlekedés, építkezés, ipar) A zaj- és rezgésvédelem a környezetvédelemnek a legkevésbé hangsúlyozott része. Oka kettős: A károsodás többnyire jelentős időveszteséggel jelentkezik. A zajprobléma megoldása nem okoz közvetlenül gazdasági hasznot.

9 BEVEZETÉS Pedig egyre súlyosabb probléma: a legelső zavaró hatás, amely az infrastruktúra és az ipar fejlődésével együtt jár. Becslések szerint kb. az emberek fele él olyan övezetekben, ahol nem biztosított a lakosság akusztikai komfortja. Nehéz védekezni ellene, elsősorban a közlekedési zajra van panasz.

10 BEVEZETÉS A közlekedés fejlődése miatt már nem csak a városokban probléma, hanem az agglomerációs övezetekben is. Újabb zajforrások jelennek meg (légkondi, ventillátor, liftek, számítógép stb.)

11 HANG A hang az emberi élet alapvető velejárója, nélküle az emberek közötti kapcsolat nehezen képzelhető el. Kifejező eszköz (verbális kommunikáció) Élvezeti cikk (zenerajongóknak) Sok esetben a veszélyre is a hangok figyelmeztetnek bennünket. Hang/zaj: Méreg az aludni vágyóknak

12 HANG Hang: Három jelentéstartalom 1. Fizikai jelenség Hangjelenség (XX. sz. elejétől): Valamely rugalmas közegben hullámszerűen tovaterjedő mechanikai zavarási állapot Mechanikai zavarás: adott helyen adott részecskével energiát közlünk - többletenergia - rezgés tovaterjed

13 HANG 2. Élettani (biológiai) jelenség Hangérzet (XX. sz. 30-as éveitől) A mechanikai hullám az élőlényekben hangérzetet kelt. Tehát a hang füllel érzékelhető külső inger hallás folyamatáról később. A hang élettani hatása kap jelentőséget. Az ember számára hallható frekvenciatartomány vonatkozásában.

14 HANG 3. Értelmi, esztétikai (lélektani) jelenség Hangélmény (XX. sz. végétől) A hallott hang, a hanghullámok információt hordozhatnak (beszéd), jelenthetnek élményt. Megfejtése : az érzékszervi felfogás és idegi továbbítás útján az agyban, ahol az adat agyi megfejtéssel válik információvá. A hangélmény a hang legfontosabb jelentéstartalma az ember szempontjából.

15 HANG-ZAJ Ezért: minden olyan hang zaj, ami nem hangélmény, hanem kellemetlen hang. Tehát: a zaj fogalma emberi értékelés függvénye, erősen szubjektív. Egy motorkerékpáros számára a motorjának erős hangja a sebesség, a száguldás örömét jelenti, míg az utcán közlekedő vagy az oda néző lakásban élő embereket zavarja, számukra a motor egyértelműen zajforrást jelent. Sok fiatal örömmel teszi ki magát rendszeresen halláskárosodást okozó hangerőnek, amikor bulizni megy, a környezetben élők számára azonban ez a zene zajpanaszra ad okot.

16 HANG A hang mechanikai hullám, azaz rugalmas közegben tovaterjedő rezgés. Az emberi fül bizonyos rezgéseket képes felfogni és hangérzetté alakítani, ezek a rezgések a hallható hangok. A hangforrás által keltett rezgési energia a rugalmas közegben nyomásváltozást okozva hullámformában terjed. Levegőben ez a nyomásváltozás a hallható hang. A fül, a levegő nyomáskülönbségét érzékeli.

17 HANG Terjedése: a részecskéről részecskére történik az elemi állapotváltozás terjedése, ami tehát a részecskék rezgésének a rugalmas közegben, hullámmozgás formájában történő terjedését jelenti Tehát csak a rezgési energia terjed, nem a részecske halad! közeg hogyan neve gáz nyomásingadozással léghang folyadék nyomásingadozással folyadékhang szilárd rugalmas alakváltozás testhang

18 Transzverzális hullám: a rezgőmozgás iránya merőleges a terjedés irányára (testhangok) HULLÁM JELLEMZŐI

19 HULLÁM JELLEMZŐI Longitudinális hullám: a rezgés és a hullámterjedés iránya megegyezik (test-, folyadék- és léghangok) sűrűsödések - ritkulások

20 periódusidő (T) frekvenciája (f ) hullámhossz ( ): amplitúdó (A) terjedési sebesség (c) HULLÁM JELLEMZŐI

21 PERIÓDUSIDŐ Az a legrövidebb idő, amely alatt a rezgés periodikusan ismétlődik Jele: T Mértékegysége: s (idő)

22 FREKVENCIA rezgések másodpercenkénti száma (1/T) Jele: f Mértékegysége: [Hz], [1/sec] Frekvencia a hangforrásra jellemző mennyiség, a hangforrás elsődleges fizikai adata. A normál hang frekvenciája 440 Hz.

23 FREKVENCIA A hang terjedése közben más - más közegbe lépve a rezgés frekvenciája állandó, ezért akárhol észleljük, a kiinduló pontra, a zajforrásra utal. Ha egyszer egy adott frekvenciával sugároz a hangforrás, az meg fog maradni más közeg ill. anyag esetén is, és csak a c és a fog változni.

24 FREKVENCIA infrahang hallható hang ultrahang f < 20 Hz Hz f > Hz 200 Hz 440 Hz 5000 Hz 8000 Hz Hz Hz Hz

25 INFRAHANG, ULTRAHANG

26 INFRAHANG, ULTRAHANG Infrahang: Az ilyen hangokat az emberi fül nem hallja, a test azonban érzékeli. Robbanások és a testek körüli lökésszerű légáramlások keltik. A nagyon nagy frekvenciájú hangokat a különféle anyagok (pl. az emberi test különféle szövetei) másmás mértékben verik vissza. (gyógyászatilag előnyös módon, mert viszonylag kicsi a sérülés, az ártalom valószínűsége). Az ultrahangot ezért általánosan használják orvosi átvilágításra (pl. ultrahang diagnosztika a magzat vizsgálatára. Használják műszaki célokra (pl. vasúti sínek repedéseinek felderítésére). Állati kommunikáció (nagyméretű állatok kis frekvenciákat, kisméretű állatok nagyobb frekvenciákat használnak)

27 FREKVENCIA A keltett hang magasságát mindig a frekvenciája határozza meg a hang annál magasabb, minél nagyobb a rezgés frekvenciája a fül a hangmagasságot a frekvencia logaritmusával arányosnak érzékeli

28 HULLÁMHOSSZ az a távolság,amit a hullám egy periódus alatt megtesz, szinusos hullámok esetén a két egymást követő csúcs közötti távolság egy periódus méterben mért hossza Jele: λ Mértékegysége: [m]

29 HULLÁMHOSSZ Jellemzők közötti összefüggés: = c/f,c = f

30 Az egyensúlyi vagy a nyugalmi helyzettől számított legnagyobb kitérés. hangerősség Mindig pozitív szám. Jele: A AMPLITUDÓ

31 PÉLDA 1. Milyen tartományba esik a hallható hangok hullámhossza, ha a hangsebességet 330 m/snak vesszük? Mekkora a hullámhossza az 1 khz-es hangnak?

32 MEGOLDÁS 1. min = c/f max min = 330 m/s / Hz min = 0,0165 m = 16,5 mm max = c/f min max = 330 m/s / 20 Hz max = 16,5 m = c/f = 330 m/s / 1000 Hz = 0,33 m = 33 cm

33 TERJEDÉS SEBESSÉGE A hanghullám terjedésének sebessége. Jele: c Mértékegysége: [m/s] c = E / E - rugalmassági modulus, [Pa] - sűrűség [kg/m 3 ] Sebesség függ:, E hőmérséklet, páratartalom, nyomás

34 TERJEDÉS SEBESSÉGE A levegő hőmérséklete befolyásolja a terjedési sebességet. Melegben a gázmolekuláknak nagyobb mozgási (kinetikus) energiája van Közelebb kerülve egymáshoz, gyorsabban adják át az energiát

35 TERJEDÉS SEBESSÉGE Levegőben: + 40 C = 355 m/s + 20 C = 340 m/s - 40 C = 306 m/s Édes vízben: + 15 C = 1437 m/s Meleg levegőben ugyanazon hang hullámhossza is nagyobb, ugyanis meleg levegőben gyorsabban terjed a hang, tehát változatlan f mellett, ha c nagyobb, akkor is nagyobb.

36 TERJEDÉS SEBESSÉGE Minden 1 C emelkedés esetén 0,6 m/s sebességnövekedés várható. Száraz időben, tengerszint nyomáson, 0 C-on c= 331m/s Más körülmények között: cp=co+0,6xtp m/s cp= adott Tp hőmérsékleten a sebesség co= 0 C esetén a sebesség

37 TERJEDÉS SEBESSÉGE A közeg megnevezése Levegő Hőmérséklet Hangsebesség C m/s Nitrogén Oxigén Szén-dioxid Metán Hélium Hidrogén Benzin Meti-alkohol Higany Víz

38 A hangterjedés sebessége egy adott közegben állandó T esetén állandó. TERJEDÉS SEBESSÉGE Ha a levegő sűrűsége kicsi, tehát a részecskék távolsága nagyobb, mint az a távolság, ami a hangnyomás által keltett részecske elmozdulás mértéke, akkor nincs hangterjedés. Ezért légüres térben nem terjed a hang, mert nincs ami közvetítse a zavarást. Ez az érték: l = m A terjedés sebessége a közeg tulajdonságaitól függ, nem a hang tulajdonságaitól.

39 TERJEDÉS SEBESSÉGE A cseppfolyós anyagokban, szilárd testekben a molekulák szorosabb kapcsolata miatt a részecskék könnyen át tudják adni egymásnak a rezgést. Tehát a hang a folyékony és szilárd közegben gyorsabban terjed, mint levegőben! Hidrogén: kicsi molekula c= 1284 m/s Hélium: nagyobb tehetetlenségű c= 965 m/s Acél: szoros kötésű molekulák c= 5940 m/s

40 PÉLDA 2. Egy 20 C -os szobában mekkora a hang terjedési sebessége?

41 MEGOLDÁS 2. C o =331m/s T p =20 C c p = c o +0,6x20=331+12=342m/s c p ~ 340m/s

42 PÉLDA 3. Egy 25 C -os szobában mekkora a hang terjedési sebessége ha 0 C on 331 m/s? Mekkora a 25 C os hang hullámhossza mm-ben 1 khz-es frekvencián?

43 MEGOLDÁS 3. C o =331m/s T p =25 C f= 1 khz c p = c o +0,6xT p =331+0,6*25=346m/s c p = 346m/s = c/f = 346/1000 = 0,346 m = 346 mm = 346 mm

44 HULLÁM JELLEMZŐI A hang terjedése közben a részecskék mozgása súrlódással jár, ennek legyőzése pedig munkavégzést kívánt. Mennél távolabb jut el a hang, egyre gyengül, végül teljesen megszűnik, energiája pedig hővé, hőenergiává alakul.

45 HULLÁM JELLEMZŐI A magas hangok rezgésszáma nagy, a mélyeké kevesebb. Amikor a magas hangok terjednek, akkor azokat a levegőben lévő részecskéket igen sokszor kell ide-oda mozgatni. A mély hangok terjedésük közben kevesebb munkát végeznek. Tehát: A magas hangok nem terjednek olyan messzire, mint a mély hangok.

46 HULLÁM JELLEMZŐI

47 TISZTA HANG Tiszta hangnak nevezzük a tiszta szinuszos hangrezgést, azaz azt a hangot, amelynek spektrumában egyetlen vonal van. Tiszta hangot keltő mechanikai eszköz a hangvilla.

48 TISZTA HANG A részecskék elmozdulását a nyugalmi helyzethez képest (x) az alábbi függvény adja meg: x = X sin (2 f t) ahol: X maximális kitérés (amplitúdó) f frekvencia [Hz] t idő [s]

49 ÖSSZETETT HANG A gyakorlatban azonban (szinte kizárólag) összetett hangokkal van dolgunk Azokat a hangrezgéseket, amelyeknek frekvenciaspektrumában nemcsak egy, hanem több, egymástól különböző frekvenciájú komponensek is találhatók, összetett hangoknak nevezzük. Az összetett hangok két nagy csoportra oszthatók: periodikusak és nemperiodikusak.

50 HULLÁMOK ÖSSZETÉTELE egyszerű harmonikus rezgés (tiszta hang): a rezgő részecskék egyensúlyi helyzetből való kitérése az idő függvényében szinuszosan változik több hullám eredője:

51 HANGOK CSOPORTOSÍTÁSA Frekvencia szerint Infrahang f > 20 Hz Hallható hang 20 Hz < f < 20 khz Ultrahang f < 20 khz A hang időbeli lefolyása állandó hang: jellege (frekvenciája, erőssége) nem változik: ventilátor, szivattyú változó hang: jellege időben változik A hang lefutása szerint folytonos: időbeli megszakítások nélküli zaj szakaszos (időszakos): időbeli megszakításokkal, csak időszakosan lép fel egyszeri: egyetlen alkalommal jelentkező zaj

52 HANGOK CSOPORTOSÍTÁSA Forma (fizikai hullám alakja) tiszta hang (szinuszos hullám) zenei hang (periodikus) zörej (statikus jellegű) összetett (kevert) A hang időtartama hanglökés (t < 10 ms) rövididejű hang (10 ms t 1 s) tartós hang (t > 1 s) hosszú (t >60s)

53 MITŐL ZAJ A HANG? Természetes hang: forrása valamilyen természeti jelenség, anyagi mozgás vagy élőlény, és megszólalását nem mesterséges beavatkozás váltja ki. PI. természetes hang a szél, a patakcsobogás, a madárcsicsergés, az állatok hangja, a mennydörgés, az emberi beszéd stb.

54 természetes hangok: MITŐL ZAJ A HANG?

55 MITŐL ZAJ A HANG? Mesterséges hang: valamilyen ember alkotta készülék vagy berendezés működése közben keletkezik, vagy ezek működtetésével, megszólaltatásával kelthető. PI. a gépek zaja, a munkavégzés zaja, a hangszóró hangja, s nem utolsósorban a hangszerek hangja, a zene is mesterséges hang stb.

56 MITŐL ZAJ A HANG? mesterséges hangok:

57 Zenei hangok Mennyivel érezzük magasabbnak egyik hangot a másiknál? pl. 200 Hz 250 Hz 440 Hz 500 Hz

58 Zenei hangok Az első hangköz a nagyobb, pedig ott a különbség csak 50 Hz, míg a másodiknál 60 Hz. nem a frekvenciák különbsége határozza meg a hangok egymáshoz viszonyított magasságát, hanem a frekvenciák aránya

59 440 Hz: Zenei hangok A hangok egymáshoz viszonyított magasságát a frekvenciák aránya határozza meg. Oktáv: a két hang frekvenciájának aránya 2- szeres 880 Hz: Hz:

60 Hangközök 1 oktáv = 12 félhang 660 Hz 699 Hz e f : 1 félhang távolság (kis szekund) 660 Hz 989 Hz e h: 7 félhang távolság (kvint):

61 Hangközök

62 mesterséges hangok: MITŐL ZAJ A HANG?

63 emberi hang: MITŐL ZAJ A HANG?

64 MITŐL ZAJ A HANG? József Attila: Születésnapomra Harminckét éves lettem én meglepetés e költemény csecse becse: ajándék, mellyel meglepem e kávéházi szegleten magam magam. Harminckét évem elszelelt s még havi kétszáz sose telt. Az ám, Hazám! Lehettem volna oktató, nem ily töltőtoll koptató szegény legény. De nem lettem, mert Szegeden eltanácsolt az egyetem fura ura. Intelme gyorsan, nyersen ért a "Nincsen apám" versemért, a hont kivont szablyával óvta ellenem. Ideidézi szellemem hevét s nevét: "Ön, amig szóból értek én, nem lesz tanár e féltekén" gagyog s ragyog. Ha örül Horger Antal úr,hogy költőnk nem nyelvtant tanul, sekély e kéj. Én egész népemet fogom nem középiskolás fokon tanítani!

65 MITŐL ZAJ A HANG?

66 MITŐL ZAJ A HANG? Kellemes hangok Zajok madár gyár hegedű közlekedés

67 MITŐL ZAJ A HANG? Csillapított rezgés Szinuszos hang Lecsengő zenei hang Állandósult zenei hang Öngerjesztett rezgés Keverékhang Zörej

68 MITŐL ZAJ A HANG? Következtetés: azoknak a hangoknak, amelyeket zajnak érzünk, az idő-kitérés grafikonja sokkal egyenetlenebb. Zaj: különböző magasságú és erősségű hangok keveréke, amit az ember kellemetlennek, zavarónak érez (szubjektív fogalom).

69 Alapfogalmak Az előzőekben objektív, mérhető fogalmakkal ismerkedtünk. A hangot azonban az ember szubjektíven érzékeli hol hangosnak, hol magasnak stb. Tulajdonképpen hangnyomás ingadozásokat érzékelünk. Hogy mekkorák ezek az ingadozások, az a hangforrás energiaközlésétől függ. Ehhez kapcsolódó fogalmakról lesz szó.

70 A hangnyomás a hangrezgések által a közegben keltett nyomás. A légköri nyomás nyugalmi értékétől való eltérés a hangnyomás. jele: p HANGNYOMÁS p = p ' p 0 [Pa], [N/m 2 ] p - 2 * 10-5 a legkisebb hangnyomás különbség amit egy átlagember füle érzékel.

71 HANGTELJESÍTMÉNY Adott felületen egységnyi idő alatt merőlegesen átáramló hangenergia. jele: W, P mértékegysége: Watt

72 HANGINTENZITÁS Egységnyi felületen egységnyi idő alatt átáramló energia azaz, a felületegységre eső hangteljesítmény jele: I mértékegysége: W / m 2 a hangteljesítmény és az intenzitás közötti összefüggés: P= I F ahol F az a teljes felület, amelyen a hangenergia átáramlik.

73 HANGINTENZITÁS P = I df P sík = I F P gömb = I 4r 2 π F = felület [m 2 ] I = intenzitás [W/m 2 ] Az intenzitás a távolság négyzetével csökken! Intenzitás mértékét a fülünk dönti el, hogy hogyan érzékeli: hallja- e - hallásküszöb elviseli- e - fájdalomküszöb Hallásküszöb Fájdalomküszöb I 0 = W/m 2 I max = 10 W/m 2

74 HANGINTENZITÁS Hangteljesítmeny : P (Watt) Hangintenzitas: I =P/A gömb = P/(4*3,14.r 2 ) W/m 2 Hangnyomás (ingadozás) p (Pa)

75 HANGINTENZITÁS I = p 2 / ( c) ahol: : sűrűség c : a hang sebessége p : hangnyomás

76 MEGJEGYZÉS emisszió immisszió

77 SZINTÉRTÉK Hallásküszöb I 0 = W/m 2 Fájdalomküszöb I max = 10 W/m 2 nagyon széles tartomány, ezzel dolgozni, számolni nehéz, a mindennapi életben előforduló hallható hangot kibocsátó zajforrások teljesítménye 15 nagyságrend széles tartományban mozog az érzékelés, a hallásunk logaritmikus érzékenységű, az ún. szubjektív hangosság érzet a mennyiségek logaritmusával arányos a minimum és maximum határok nagyon nagyok frekvenciában és amplitúdóban is, ezért a logaritmikus skálázás könnyebb a számolás egyszerűbb ezért kellett a hang erősségének jellemzésére a szintértékeket bevezetni

78 SZINTÉRTÉK Meghatározott alaphoz való viszonyítás logaritmikus rendszerben, azaz két azonos mértékegységű, teljesítményarányos jellemző hányadosának 10-es alapú logaritmusa Jele: L i Mértékegysége: (bel),decibel db i = a jellemző jelölése pl.: L p L I L W,P

79 HANGNYOMÁSSZINT (L p ) (mivel szint képzésénél teljesítményarányos mennyiségek hányadosát kell alapul venni, és I p 2 ) L p = lg (p/p 0 ) 2 Bel A bel nem elég érzékeny, tizedes is gyakran előfordulhat, hogy könnyebben számolhassunk, ennek az értéknek a tizedrészével fejezzük ki a szintértékeket. 1 bel = 10 decibel, 10 db L p = 10 lg (p/p 0 ) 2 db L p = 20 lg p/p 0 db A hangnyomásszint függ - a hangforrás helyétől - a környezeti feltételektől - a mérési ponttól való távolságtól

80 HANGINTENZITÁSSZINT (L I ) L I = lg I / I 0 Bel ahol I 0 = W / m 2. I = jelenlegi sugárzó hang intenzitása 1 bel = 10 decibel db L I = 10 lg (I/I 0 ) db

81 MEGJEGYZÉS A hangintenzitásszint és a hangnyomásszint a hangtér egy adott pontjában mérhető mennyiségek, a zaj által okozott terhelést mérik, immissziós jellemzők. A gyakorlatban inkább a hangnyomásszint használatos. (Pl. egy lakóház homlokzatánál a közlekedési zaj hangnyomásszintje 40 db) L p = 40 db

82 HANGTELJESÍTMÉNYSZINT (L W ) L w = 10 lg W/W 0 (db) L w =70dB ahol W: a hangforrás teljesítménye W 0: viszonyítási alap: Watt, 1 pw (Pl. egy ipari berendezés hangteljesítmény-szintje 70 db) A hangteljesítményszint a hangforrásra jellemző mennyiség, a kibocsátott teljesítményt méri emissziós jellemző.

83 PÉLDA 4. Mekkora a hallásküszöbhöz I 0 = W/m 2 hez tartozó hangnyomás? (p 0 ) Levegő esetén: 0 = 1,2 kg/m 3 c = 340 m/s

84 MEGOLDÁS 4. I 0 = p 2 / ( 0 c) (Nm/sm 2 ) = p 02 (N/m 2 ) 2 / (1,2 (kg/m 3 ) * 340 m/s) p 0 = 20, N/m 2 p 0 = N/m 2 I=W/m 2 W = Joule/s J = Nm N = kg m/s 2

85 PÉLDA 5. Mekkora az éppen hallható és a maximális elviselhető hang hangintenzitásszintje?

86 MEGOLDÁS 5. L Imin =I 0 /I 0 =10-12 W/m 2 /10-12 W/m 2 =0 db L Imin = 0 db L Imax =I max /I 0 =10 W/m 2 /10-12 W/m 2 =130 db L Imax =130 db

87 PÉLDA 6. 1.Mekkora teljesítményszintnek felel meg 3 μw?

88 3 μw = W W 0 = W MEGOLDÁS 6. L W = 10 lg W/W 0 = 64,8 db = 65 db L W = 65 db

89 PÉLDA 7. Határozzuk meg P=1,35 mw hangteljesítményű zajforrás abszolút és P 0 =1 nw-ra vonatkoztatott relatív teljesítményszintjét Egy hangszóró 1,5 W teljesítménnyel sugározza a hangot a tér minden irányában. Mekkora a hangintenzitása és a hangintenzitásszintje tőle 5 m távolságban.

90 MEGOLDÁS 7. L P =10log P/10-12 W L P =10log /1,35*10-3 W/10-12 W=91,3 db L P =91 db L P =10log P/10-9 W L P =10log /1,35*10-3 W/10-9 W=61,3 db L P =61 db

91 I = P/A = P/4 R 2 I = 4,77*10-3 W/m 2 MEGOLDÁS 7. L I =10log I/I 0 L I =10log /4,77*10-3 W/m 2 /10-12 W/m 2 L I =97 db

92 PÉLDA 8. Egy forgalmas autóút közelében 90 db az átlagos hangintenzitásszint. Mekkora a hangintenzitás? Hány m 2 -ről kellene a hangot összegyűjteni és árammá alakítani, hogy egy 100W-os izzót működtetni lehessen vele?

93 MEGOLDÁS 8. L I =10log I/I 0 90 db =10log I/10-12 W/m 2 I = 10-3 W/m 2 I= P/A A =P/I = 100 W/ 10-3 W/m 2 A= 10 5 m 2

94 PÉLDA 9. P 1 =10 12 W P 2 =10 6 W Mennyi a szintkülönbség B-ben és dbben?

95 MEGOLDÁS 9. L P = log P 1 /P 2 = log10 12 W/10 6 W= 6 B L P = 6 B L P = 10logP 1 /P 2 = 10log W/10 6 W= 60 db L P = 60 db

96 HALLÁS A hallás egy rendkívül összetett folyamat; az öt érzék közül az első, mely a magzatban kifejlődik és mely képessé teszi a külvilággal való kapcsolatra

97 HALLÁS A hang, mint fizikai jelenség, a fülünkön keresztül válik valósággá. A fülünk hangnyomást érzékel, ezt átalakítja érzékszervi-agyi- adatokká, így lesz a hangnyomásból hangosság. Ezek az érzékszervi adatok okoznak bennünk magatartásunkat és állapotunkat meghatározó hatásokat. Ezek alapján mondunk egy hangot kellemetlennek, ezek a folyamatok hozzák létre a hangosságból a zajosságot.

98 FÜL A fül mechanikai, hidrodinamikai és elektromos jelátalakító, idegvezetési és agyi szerkezet. Két érzékszerv: hallás szerve egyensúlyozás szerve Eddigi legtöbb ismeretünket a fülről Békésy Györgynek köszönhetjük, aki kutatásaiért 1961-ben Nobel díjat kapott.

99 FÜL

100 FÜL külső fül (dobhártyáig) részei fülkagyló külső hallójárat A hallójárat bemenetele a porcos fülkagyló Összegyűjti a hanghullámokat és a hallójáraton át a dobhártyáig tereli, a hang megrezegteti a hallójáratot lezáró dobhártyát. Dobhártya fel erősíti a rezgéseket.

101 FÜL középfül (levegővel teli üreg) dobhártyához kapcsolódik: kalapács, üllő, kengyel hallócsontok testünk legkisebb csontja, a kengyel a hallócsontok ízületekkel kapcsolódnak egymáshoz a hangrezgéseket hallócsontok viszik a dobhártyáról a belső fülre a csigához a kengyel talpa a csiga ovális ablakához illeszkedik ide továbbítja a felerősített rezgéseket a középfül része a fülkürt, amely a garatba vezet.

102 FÜL Belső fül: ebben található a csiga

103 FÜL A keletkezett ingerület a szőrsejtek idegvégződésein, az idegrostokon, majd a hallóidegen halad az agy hallóközpontjába. Itt keletkezik a hangérzet. A hallás érzékszerve a csiga A csiga csontos, spirálisan feltekeredő szerv, belül találjuk az alaphártyát, alsó felső középső csigajárat található A csigát folyadék tölti ki amit a kengyel mozgás rezgésbe hoz. A hallócsontok rezgése a csiga folyadékában nyomás-ingadozást vált ki. Az alaphártyán található Corti-féle szerv, amelynek szőrsejtjeiben váltja ki a csigafolyadékának nyomásingadozása az ingerületet.

104 HALLÁS FOLYMATA A nagyobb frekvenciájú rezgések (magasabb hangok) a csiga alapjához közel elnyelődnek és rezgésbe hozzák az alaphártyát. A kisebb frekvenciájú rezgések (mélyebb hangok) a csiga csúcsához közelebb rezgetik meg az alaphártyát az elnyelődés helyén elektromos ingerület alakul ki, ami az agyba jut. Így az ingerület keletkezésének helye kódolja a hang magasságát. Az elektromos ingerület kialakulása a Corti szervben történik. A csigában keletkező rezgés hatására a fedőhártya hozzányomódik az alaphártyán ülő szőrsejtekhez a szőrök elhajlanak és ingerület alakul ki. Corti szerv ily módon a rezgést képes elektromos jellé alakítani, ami a hallóidegrostjain az agyba, majd a hallópályán az agykéregbe jut. Az agykéregben kialakul a hangérzet.

105 SPEKTRUM - SZÍNKÉP Spektrum (színkép): egy adott időpillanatban ábrázolja az egyes frekvenciákhoz tartozó hangnyomásszintet. Olyan függvény, amely megmutatja, hogy a zajforrás milyen frekvencián milyen erősségű hangot bocsát ki. A tisztahang (szinuszos hang) színképe az adott frekvenciához tartozó egyetlen függőleges vonal. Vonalas Folytonos

106 SPEKTRUM - SZÍNKÉP vonalas színkép: a sugárzás csak meghatározott frekvencián vagy frekvenciákon történik (sziréna, zenei hang)

107 Folytonos és vonalas színkép

108 SPEKTRUM - SZÍNKÉP folytonos színkép: a hangforrás valamennyi frekvencián sugároz (színes spektrum: x-idő, y-frekvencia, szín-db rózsaszín-kék-zöld irányban nő a hangnyomás)

109 L [db] L [db] L [db] SPEKTRUM - SZÍNKÉP fehér zaj: olyan zaj, amelynek színképe folytonos, és valamennyi frekvencián ugyanakkora a hangnyomás 20Hz-20kHz között Fehér zaj elnevezés: a fehér fény mintájára, amely valamennyi látható fény keveréke. szürke zaj: egy adott frekvenciatartományban a spektrum folytonos, és intenzitása egyenletes (pl. társalgás) rózsaszín zaj: hangnyomásszintje a frekvenciával fordítva arányosan esik oktávonként 3dB-lel, a természetben nem fordul elő, műszer-beállítási célokra használatos f [Hz] f [Hz] f [Hz]

110 MŰVELETEK SZINTEKKEL A db-ben mért szintek logaritmikus jellemzők közvetlenül nem adhatók össze! Közvetlenül összeadhatók a teljesítménnyel arányos mennyiségek: hangteljesítmény, hangintenzitás, hangnyomás négyzete.

111 MŰVELETEK SZINTEKKEL 3,0 2,5 Korrekciós faktor (db) 2,0 1,5 1,0 0,5 0, Szintkülönbség (db)

112 MŰVELETEK SZINTEKKEL Az ábráról leolvasható, hogy 0 db eltéréshez 3 db-es növekedés tartozik. Ha egy 55dB-es és egy 51 db -es hang eredőjét akarjuk megkapni, akkor a különbségből kell kiindulni, ami 4dB. Ha ez a két hang egyszerre szól, akkor annak nem 106 db lesz az eredménye, hanem lényegesen kevesebb! A vízszintes tengelyen megkeressük a 4 db-es pontot és kivetítjük a függőleges tengelyre, ahol 1,4 db-t kapunk. Ezt végül a nagyobb hangnyomásszintű hanghoz adjuk hozzá, a végeredmény tehát: 55 db + 51 db = 56,4 db!

113 MŰVELETEK SZINTEKKEL DECIBELEK ÖSSZEADÁSÁNAK ÁLTALÁNOS KÉPLETE: L e = 10 lg (10 0,1 L ,1 L ,1 L ,1 L n ) Ha a nyomásszintek adottak: L P 10lg Például két forrás esetén: L n i ,1 L Pi db 0,1L P 1 1LP 2 P 10lg( , 1,2 ) db

114 PÉLDA 10. A hangtér egy adott pontjában egy időben 3 zajforrás zaja észlelhető. Az egyes forrásoktól származó hangnyomásszint: L p1 =62 db, L p2 =65 db, L p3 =71 db. Mekkora az eredő hangnyomásszint?

115 MEGOLDÁK 10. A fenti értékeket behelyettesítve: L pe = 72,39 db 72 db A szintértékeket egész db-re kell kerekíteni!

116 PÉLDA 11. Egy műhelyben 90 db hangnyomásszint mérhető. Ha az egyik gépet leállítják, a hangnyomásszint 85 db-re csökken. Mekkora hangnyomásszint tartozik ahhoz a géphez, amelyet leállítottak?

117 MEGOLDÁS 11. L e = 10 lg (10 0,1 L ,1 L 2 ) L e = 90 db L 1 = 85 db 90 = 10 lg (10 0, ,1 L2 ) 10 9 = 10 8, ,1 L2 ( ,5 ) = 100,1 L2 lg ( ,5 ) = 0,1 L 2 L 2 = 88 db

118 PÉLDA 12. Ha 4 különböző hangforrás eredetijét akarjuk kiszámolni: L1=70 db, L2=76 db, L3=75 db, L4=73 db

119 MEGOLDÁS 12. Megoldás: (diagram segítségével) L2-L1=76-70=6 db L=1 db L1+2=77 db L1+2-L3=77-75=2 db L=2 db L1+2+3=79 db L1+2+3-L4=79-73=6 db L=1 db L =80 db Számítással: L e = 10 lg (10 0,1 L ,1 L ,1 L ,1 L4 ) L e = 10 lg (10 0, , , ,1 73 ) = 80 db

120 HANGMAGASSÁG ÉS HANGOSSÁG ÉRZETE Hallószervünk nem egyformán érzékeli a különböző frekvenciájú hangrezgéseket. Adott frekvenciájú hang szubjektív hangosságérzete meghatározott hangnyomáson egészen más, mint egy másik frekvenciájú hang által keltett hangosságérzet ugyanazon a hangnyomáson. Az ember által érzékelt hangmagasságra a Weber- Fechner-féle törvény vonatkozik, amely szerint a hangmagasságérzet és a frekvencia között logaritmikus az összefüggés (100Hz-300Hz, 3000 Hz-6000 Hz)

121 HANGMAGASSÁG ÉS HANGOSSÁG ÉRZETE H. Fletcher és W. A. Munson végzett kísérletet a hangosság szubjektív érzetének a vizsgálatára 1933-ban. A kísérlet lényege: sokezer egészséges, ép hallású kísérleti alany fülhallgató 10 3 Hz tiszta hang (nemzetközileg ezt választották összehasonlítási alapnak) frekvencia- és intenzitásszint változtatása

122 HANGMAGASSÁG ÉS HANGOSSÁG ÉRZETE Méréseik eredményét egy egyesített hangosságérzetdiagramban ábrázolták, amely az azonos hangossághoz tartozó hangintenzitások görbéit tartalmazza

123 HANGMAGASSÁG ÉS HANGOSSÁG ÉRZETE Menetük hasonló Nem párhuzamosak Azonos vonalon azonos nagyságúnak érezzük a hang erősségét Szaggatott vonal hallásküszöb 10 3 Herznél 4 db szintnél Az eredeti görbéken ban ez 0 volt! Azóta az átlagos hallásküszöb 4 db-t romlott! Hangosságszintek Mértékegysége: phon Értelmezése: annak az 1 kh frekvenciájú, szabad hangtérben szemközt érkező tisztahangnak a hangnyomásszintje, amely azonos hangérzetet kelt a kérdéses hanggal Az 1 khz-es hangok annyi phonosak, ahány db-ek

124 AZ EMBERI HALLÁS FREKVENCIAFÜGGŐ VÁLTOZÁSAI

125 HALLÁSKÜSZÖB FÁJDALOMKÜSZÖB A hallható frekvenciákon kísérleti úton megállapították, hogy mekkora az a legkisebb hangintenzitás, amely még hangérzetet kelt a normális hallású emberben, ill. mekkora nagyságú hangintenzitás hatására keletkezik fájdalomérzet Ez a hallásküszöb ill. fájdalomküszöb A hallásküszöb valamely adott frekvenciájú tiszta hang az a legkisebb hangnyomásértéke, amely süketszobában egy normális hallású személy hallószervében még hangérzetet kelt.

126 ÉRDEKESSÉG Az emberi hallás jellemzője, hogy két hangforrás hangosságát csak akkor érzékeljük jelentős mértékben különbözőnek, ha a hangszintek közötti különbség eléri a 10 db értéket.

127 HANGOK ÉS ZAJOK Szubjektív, hogy ki mit tart zajnak Hogyan lehet ilyen szubjektív dologra zajvédelmet szervezni? Meg kell keresni azokat az érzékelhető jellemzőket, szubjektív hatásokat, amelyek mérhető, objektív fizikai adatokkal összekapcsolhatók. Csak úgy mondhatjuk valamire, hogy hangos, ha tudjuk, mit jelent a hangosság (mivel mérhetjük).

128 HANGOK ÉS ZAJOK ember (szubjektív) fizikai (objektív) hangosság hangerősség hangmagasság intenzitás hangszín É - B - M frekvencia időtartam E - I - A időtartam irány színkép irány E = érzékelés M = mérés I = idegi továbbítás B = mérési eredmény bemutatása, A = agyfunkció É = eredmény értékelése Kettő közötti kapcsolatot kell megtalálni, ha a zajvédelmet akarjuk megvalósítani

129 A, dba Az emberi fül hangosságérzése tehát frekvenciafüggő, nem minden frekvencián egyformán érzékeny Hogyan mérjünk, hogy az emberi fül érzékenységének feleljen meg? Ehhez olyan mérőműszer kell, melynek azonos vagy nagyon hasonló tulajdonságai vannak, mint a fülünk hallásérzékelésének. Tehát szintén frekvenciafüggő hangosságot mér.

130 A, dba Az emberi hallás frekvencia függésének modellezésére az A súlyozószűrőt használják. Az A súlyozószűrővel mért zajszintet A-hangnyomásszintnek nevezzük, és dba-val jelöljük.

131 A, dba Olyan zajmérő műszert kell tervezni, amelyiknek azonos az átviteli karakterisztikája a fülünkével. Mi az emberi fül átviteli karakterisztika függvénye? A phon-görbék!

132 A, dba A sok görbe közül ki választottak egyet. Ez a 40-es phongörbe türörképe. Mert ez jellemzi legjobban a fül érzékenységét.

133 A, dba 0 A-súlyozás (db) Frekvencia (Hz)

134 A-súlyozás

135 Súlyozó görbék összehasonlítása

136 ÁLTALÁNOS INTENZITÁSSZINTEK db Forrás (távolság) 180 A Krakatau vulkán robbanása 100 mérföldről (160 km) a levegőben 168 géppuska lövése 1 méterről 150 repülőgép sugárhajtóműve 30 méterről 140 pisztolylövés 1 méterről 120 fájdalomküszöb; vonat kürt 10 méterről 110 gyorsító motorkerékpár 5 méterről; láncfűrész 1 méterről 100 légkalapács 2 méterről; diszkó belül 90 üzemi zaj, kamion 1 méterről 80 porszívó 1 méterről, zaj forgalmas utca járdáján 70 erős forgalom 5 méterről 60 iroda vagy vendéglő belül 50 csendes vendéglő belül 40 lakóterület éjjel 30 színházi csend 10 emberi lélegzet 3 méterről 0 emberi hallásküszöb (egészséges fül esetén) egy szúnyog repülésének hangja 3 méterről

137 Oktáv sáv szintek Elméletileg egy akusztikus zajesemény teljes leírásához minden (az emberi fül által hallható) frekvencián ismerni kell az adott frekvenciához tartozó hangnyomásszintet. A gyakorlati életben, a legtöbb esetben azonban ilyen részletes ismeretére a zajnak nincs szükség, mivel egymáshoz közeli frekvenciákon a legtöbb esetben nincs jelentős változás a hangnyomásszintekben.

138 Oktáv sáv szintek

139 Oktáv sáv szintek Pl. f k =1000 Hz, f a =707 Hz, f f =1414 Hz Amennyiben nagyobb frekvenciafelbontásra van szükség (mert pl. a vizsgált zaj éles rezonanciákat tartalmaz) akkor kerülhet sor az egyharmad-oktáv sávok (más néven tercsávok) alkalmazására.

140 Oktáv sáv szintek Frekvencia [Hz] A-súlyozás [db] 31,5-39, , , , , , , , ,1

141 Oktáv sáv szintek Az oktáv sáv szintekből az A-hangnyomásszintet (L pa ) két lépésben lehet kiszámolni. Elsőként minden oktáv sávra vonatkozóan az adott oktáv sávban mért hangnyomásszintet korrigáljuk az A-súlyokkal (azaz pl. a 31,5 Hz központi frekvenciájú oktávsávban mért hangszintből levonunk 39,4 db-t), majd az így kapott korrigált hangszinteket összegezzük.

142 Köszönöm a figyelmet!

Zaj,- rezgés és sugárzásvédelem NGB_KM015_ tanév tavasz 2. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék

Zaj,- rezgés és sugárzásvédelem NGB_KM015_ tanév tavasz 2. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék Zaj,- rezgés és sugárzásvédelem NGB_KM015_1 2017 2018. tanév tavasz 2. előadás Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék TARTALOM Példák Hangok csoportosítás Hangjellemzők 2018.02.26.

Részletesebben

Zaj és rezgésvédelem tanév tavasz 2. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék

Zaj és rezgésvédelem tanév tavasz 2. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék Zaj és rezgésvédelem 2018 2019. tanév tavasz 2. előadás Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék TARTALOM Példák Hangok csoportosítás Hangjellemzők 2019.02.19. 2 PÉLDA 1. Milyen

Részletesebben

Zaj,- rezgés és sugárzásvédelem tanév tavasz 3. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék

Zaj,- rezgés és sugárzásvédelem tanév tavasz 3. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék Zaj,- rezgés és sugárzásvédelem 2017 2018. tanév tavasz 3. előadás Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék ELŐADÁS ANYAGA Hallás folyamata Spektrum Színkép Műveletek szintekkel

Részletesebben

Zaj,- rezgés és sugárzásvédelem NGB_KM015_ tanév tavasz 1. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék

Zaj,- rezgés és sugárzásvédelem NGB_KM015_ tanév tavasz 1. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék Zaj,- rezgés és sugárzásvédelem NGB_KM015_1 2017 2018. tanév tavasz 1. előadás Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék ELÉRHETŐSÉG Szoba: D 512 Telefonszám: 96/503-400/3103 E-mail:

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

2. Az emberi hallásról

2. Az emberi hallásról 2. Az emberi hallásról Élettani folyamat. Valamilyen vivőközegben terjedő hanghullámok hatására, az élőlényben szubjektív hangérzet jön létre. A hangérzékelés részben fizikai, részben fiziológiai folyamat.

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

A hang mint mechanikai hullám

A hang mint mechanikai hullám A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak

Részletesebben

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki. Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben

Részletesebben

Környezetvédelem NGB_KM002_1

Környezetvédelem NGB_KM002_1 Környezetvédelem NGB_KM002_1 2018/2019. tanév I. félév Győrfi András phd hallgató gyorfia@sze.hu SZE AHJK - Környezetmérnöki Tanszék 8. Zajvédelem HANG Hang: Három jelentéstartalom 1. Fizikai jelenség

Részletesebben

Az emberi hallás. A fül felépítése

Az emberi hallás. A fül felépítése Az emberi hallás A fül felépítése Külső fül: Hangösszegyűjtés, ami a dobhártyán rezgéssé alakul át. Középfül: mechanikai csatolás a dobhártya és a belső fül folyadékkal töltött részei között. Kb. 2 cm

Részletesebben

Hullámok, hanghullámok

Hullámok, hanghullámok Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési

Részletesebben

ZAJ ÉS REZGÉSVÉDELEM Rezgéstan és hangtan

ZAJ ÉS REZGÉSVÉDELEM Rezgéstan és hangtan Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Felsőfokú munkavédelmi szakirányú továbbképzés ZAJ ÉS REZGÉSVÉDELEM Rezgéstan és hangtan MÁRKUS MIKLÓS ZAJ ÉS REZGÉSVÉDELMI

Részletesebben

Környezetvédelem műszaki alapjai. alapjai, akusztika

Környezetvédelem műszaki alapjai. alapjai, akusztika Department of Fluid Mechanics Budapest University of Technology and Economics Környezetvédelem műszaki alapjai, akusztika Nagy László nagy@ara.bme.hu 2010. Március 31. Környezetvédelem műszaki alapjai

Részletesebben

Hangintenzitás, hangnyomás

Hangintenzitás, hangnyomás Hangintenzitás, hangnyomás Rezgés mozgás energia A hanghullámoknak van energiája (E) [J] A detektor (fül, mikrofon, stb.) kisiny felületű. A felületegységen áthaladó teljesítmény=intenzitás (I) [W/m ]

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

Zaj és rezgésvédelem Rezgéstan és hangtan

Zaj és rezgésvédelem Rezgéstan és hangtan Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar felsőfokú munkavédelmi szakirányú továbbképzés Zaj és rezgésvédelem Rezgéstan és hangtan Márkus Miklós zaj és rezgésvédelmi

Részletesebben

A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása

A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása A Brüel & Kjaer zajdiagnosztikai módszereinek elméleti alapjai és ipari alkalmazása Összeállította: dr. Szuhay Péter Budapest, 2013 Filename, 1 Hang és zaj 1. rész Dr. Szuhay Péter B & K Components Kft

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Fizikai hangtan, fiziológiai hangtan és építészeti hangtan

Fizikai hangtan, fiziológiai hangtan és építészeti hangtan Fizikai hangtan, fiziológiai hangtan és építészeti hangtan Témakörök: A hang terjedési sebessége levegőben Weber Fechner féle pszicho-fizikai törvény Hangintenzitás szint Hangosságszint Álló hullámok és

Részletesebben

GYAKORLATI ÉPÜLETFIZIKA

GYAKORLATI ÉPÜLETFIZIKA GYAKORLATI ÉPÜLETFIZIKA Akusztika: A hang, és általában a rezgések tudománya. Görögből: akuein hallani. Igen széles tudományterületet ölel fel, néhány szokásos szakterületi elnevezés: épületakusztika,

Részletesebben

Zaj és rezgésvédelem AJNM_KMTM előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék

Zaj és rezgésvédelem AJNM_KMTM előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék Zaj és rezgésvédelem AJNM_KMTM001 2. előadás Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék ELŐADÁS ANYAGA Bevezetés Hang-Zaj Zajmérés, Zajtérképezés IDÉZET A zajjal száz esztendő múlva

Részletesebben

Rezgések és hullámok

Rezgések és hullámok Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő

Részletesebben

Impulzív zaj eredetű halláskárosodás. RPG-7 lövészet által okozott halláskárosodás oka

Impulzív zaj eredetű halláskárosodás. RPG-7 lövészet által okozott halláskárosodás oka Impulzív zaj eredetű halláskárosodás RPG-7 lövészet által okozott halláskárosodás oka Előzmény 2013. nyarán az MH 5. Bocskai István Lövészdandár kiképzési foglalkozás keretében lövészetet hajtott végre

Részletesebben

Zaj és rezgésvédelem LGM_KE001_1 1. előadás. Bedő Anett egyetemi tanársegéd SZE, MTK, BGÉKI, Környezetmérnöki tanszék

Zaj és rezgésvédelem LGM_KE001_1 1. előadás. Bedő Anett egyetemi tanársegéd SZE, MTK, BGÉKI, Környezetmérnöki tanszék Zaj és rezgésvédelem LGM_KE001_1 1. előadás Bedő Anett egyetemi tanársegéd SZE, MTK, BGÉKI, Környezetmérnöki tanszék ELÉRHETŐSÉG E-mail: bedoa@sze.hu Weblap: www.sze.hu/~bedoa KÖVETELMÉNYEK Gyakorlat a

Részletesebben

ZAJ ÉS REZGÉSVÉDELEM Hallás

ZAJ ÉS REZGÉSVÉDELEM Hallás Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar Felsőfokú munkavédelmi szakirányú továbbképzés ZAJ ÉS REZGÉSVÉDELEM Hallás MÁRKUS MIKLÓS ZAJ ÉS REZGÉSVÉDELMI SZAKÉRTŐ

Részletesebben

Zaj (bevezetés) A zaj hatása Zaj Környezeti zaj Zajimisszió Zajemisszió Zaj szabályozás Zaj környezeti és gazdasági szerepe:

Zaj (bevezetés) A zaj hatása Zaj Környezeti zaj Zajimisszió Zajemisszió Zaj szabályozás Zaj környezeti és gazdasági szerepe: Zaj (bevezetés) A zaj hatása: elhanyagolhatótól az elviselhetetlenig. Zaj: nem akart hang. Környezeti zaj: állandó zaj (l. ha nincs közlekedés). Zajimisszió: Zajterhelés az érzékelés helyén. Zajemisszió:

Részletesebben

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2

Diagnosztika Rezgéstani alapok. A szinusz függvény. 3π 2 Rezgéstani alapok Diagnosztika 03 --- 1 A szinusz függvény π 3,14 3π 4,71 π 1,57 π 6,8 periódus : π 6,8 A szinusz függvény periódusának változása Diagnosztika 03 --- π sin t sin t π π sin 3t sin t π 3

Részletesebben

Az ipari akusztika alapjai

Az ipari akusztika alapjai 1 Az ipari akusztika alapjai Akusztikai alapismeretek Hang: akusztikus energia, az egymáshoz csapódó molekulák ütközéseinek sorozata. Kis amplitúdójú fizikai rezgés (A levegőben nyomásingadozás) Hang létrejöttéhez

Részletesebben

GPGPU. Hangfeldolgozás és hangszintézis

GPGPU. Hangfeldolgozás és hangszintézis GPGPU Hangfeldolgozás és hangszintézis Tartalom A mostani órán hangszintézis és hangfeldolgozási alapokat tekintünk át Ahhoz, hogy értelme legyen a problémák többségénél GPU-t használni, egy bizonyos (méret/számítási

Részletesebben

ÉPÜLETEK ZAJVÉDELME Épületek rendeltetésszerű használatához tartozó követelmények Szerkezeti állékonyság Klímakomfort (hő- és páravédelem, frisslevegő, ) Természetes és mesterséges megvilágítás zajvédelem

Részletesebben

Audiometria 1. ábra 1. ábra 1. ábra 1. ábra 1. ábra

Audiometria 1. ábra 1. ábra 1. ábra 1. ábra 1. ábra Audiometria 1. Az izophongörbék (más néven azonoshangosság- görbék; gyakjegyzet 1. ábra) segítségével adjuk meg a táblázat hiányzó értékeit Az egy sorban lévő adatok egyazon tiszta szinuszos hangra vonatkoznak.

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Zaj- és rezgés védelem

Zaj- és rezgés védelem Zaj- és rezgés védelem Mi a zaj? A zaj kellemetlen zavaró hang Zajnak nevezünk minden olyan nemkívánatos vagy túl hangos hangjelensége(ke)t, amely az egyén életfunkcióit, munkáját, munkájának és pihenésének

Részletesebben

Hallás Bódis Emőke november 19.

Hallás Bódis Emőke november 19. Néhány szó a hangról A nyomás oszcillálása A hang egy 3D-s longitudinális hullám, amely rugalmas közegben terjed! Hallás Bódis Emőke 2014. november 19. 1. Időbeli periodicitás: Periódusidő (T, s) Frekvencia

Részletesebben

Hang és fény (Akusztika, fénytechnika)

Hang és fény (Akusztika, fénytechnika) Hang és fény (Akusztika, fénytechnika) A hang fizikai leírása Hang rugalmas közeg mechanikai rezgései szilárd anyag testhang cseppfolyós anyag folyadékhang levegő léghang (emberi hallás) Léghang légnyomásingadozás

Részletesebben

Meteorológiai paraméterek hatása a zaj terjedésére Budaörsön az M7-es autópálya térségében

Meteorológiai paraméterek hatása a zaj terjedésére Budaörsön az M7-es autópálya térségében Meteorológiai paraméterek hatása a zaj terjedésére Budaörsön az M7-es autópálya térségében Készítette: Kádár Ildikó Környezettudomány szak Témavezető: Pávó Gyula, ELTE Atomfizikai Tanszék Konzulensek:

Részletesebben

Rezgőmozgás, lengőmozgás

Rezgőmozgás, lengőmozgás Rezgőmozgás, lengőmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus mozgást

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 15%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

GYAKORLATI ÉPÜLETFIZIKA

GYAKORLATI ÉPÜLETFIZIKA GYAKORLATI ÉPÜLETFIZIKA A levegőben terjedő hang a levegő részecskéit megmozgatja, közöttük sűrűsödéseket és ritkulásokat hoz létre. Hangnyomás: a normál légnyomás [10 5 Pa] hang hatására történő változásának

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Hallás időállandói. Következmények: 20Hz alatti hang nem hallható 12Hz kattanás felismerhető

Hallás időállandói. Következmények: 20Hz alatti hang nem hallható 12Hz kattanás felismerhető Hallás időállandói Fizikai terjedési idők Dobhártya: végtelenül gyors Hallócsontok: 0.08ms késés Csiga: 20Hz: 3ms késés 100Hz: 1.5 ms késés 1000Hz: 0.3ms késés >3000Hz: késés nélkül Ideg-impulzus időtartam:

Részletesebben

ZAJVÉDŐ FAL HATÁSOSSÁGÁNAK VIZSGÁLATA A BUDAPEST III. KERÜLETI JÉGTÖRŐ ÚTNÁL

ZAJVÉDŐ FAL HATÁSOSSÁGÁNAK VIZSGÁLATA A BUDAPEST III. KERÜLETI JÉGTÖRŐ ÚTNÁL ZAJVÉDŐ FAL HATÁSOSSÁGÁNAK VIZSGÁLATA A BUDAPEST III. KERÜLETI JÉGTÖRŐ ÚTNÁL Készítette: Vincze Dénes Andor Környezettan Bsc Témavezető: Pávó Gyula Dátum: 2015.01.29 A hang fizikai leírása és hangtani

Részletesebben

Zaj és rezgésvédelem Hangterjedés

Zaj és rezgésvédelem Hangterjedés Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar felsőfokú munkavédelmi szakirányú továbbképzés Zaj és rezgésvédelem Hangterjedés Márkus Miklós zaj és rezgésvédelmi

Részletesebben

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény

Részletesebben

III. A ZAJ. Zajjellemző (zajindikátor): a környezeti zajt leíró fizikai mennyiség, amely kapcsolatban van a káros hatással

III. A ZAJ. Zajjellemző (zajindikátor): a környezeti zajt leíró fizikai mennyiség, amely kapcsolatban van a káros hatással III. A ZAJ A hang szerepe óriási az emberré válásban tagolt, hanggal közvetített beszéd nélkül nincs emberi társadalom. Hang és a környezeti zaj különböző Hang: környezetünk természetes része Környezeti

Részletesebben

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%.

Értékelés Összesen: 100 pont 100% = 100 pont A VIZSGAFELADAT MEGOLDÁSÁRA JAVASOLT %-OS EREDMÉNY: EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA 35%. Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Épületakusztika ÉPÜLETFIZIKA. Horváth Tamás. építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék

Épületakusztika ÉPÜLETFIZIKA. Horváth Tamás. építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék Épületakusztika Horváth Tamás építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék 1 Épületakusztika Akusztika: A hang, és általában a rezgések tudománya.

Részletesebben

Zaj és rezgésvédelem

Zaj és rezgésvédelem OMKT felsőfokú munkavédelmi szakirányú képzés Szerkesztette: Márkus Miklós zaj- és rezgésvédelmi szakértő Lektorálta: Márkus Péter zaj- és rezgésvédelmi szakértő Budapest 1. február Tartalomjegyzék Tartalomjegyzék...

Részletesebben

Zaj és rezgésvédelem NGB_KM015_ tanév tavasz Zajmérés. Bedő Anett egyetemi tanársegéd SZE, MTK, BGÉKI, Környezetmérnöki tanszék

Zaj és rezgésvédelem NGB_KM015_ tanév tavasz Zajmérés. Bedő Anett egyetemi tanársegéd SZE, MTK, BGÉKI, Környezetmérnöki tanszék Zaj és rezgésvédelem NGB_KM015_1 2017 2018. tanév tavasz Zajmérés Bedő Anett egyetemi tanársegéd SZE, MTK, BGÉKI, Környezetmérnöki tanszék Előadás, gyakorlat Zajmérés-elmélet Zajmérés-gyakorlat 25/2004.

Részletesebben

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ

PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat

Részletesebben

Mechanika, dinamika. p = m = F t vagy. m t

Mechanika, dinamika. p = m = F t vagy. m t Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.

Részletesebben

Infokommunikáció - 3. gyakorlat

Infokommunikáció - 3. gyakorlat Infokommunikáció - 3. gyakorlat http://tel.tmit.bme.hu/infokomm Marosi Gyula I.B.222., tel.: 1864 marosi@tmit.bme.hu 1. feladat - Fletcher-görbék Beszéljük meg, milyen kvantitatív és kvalitatív jellemzık

Részletesebben

nem anyagi természetű, hanem energia kibocsátás

nem anyagi természetű, hanem energia kibocsátás Zajszennyezés speciális jellegű környezeti ártalom nem anyagi természetű, hanem energia kibocsátás az akusztikus zaj fogalma fizikai szempontból hang és zaj között nincs különbség az érzékelő felfogása

Részletesebben

Külső fül: Középfül: Belső fül:

Külső fül: Középfül: Belső fül: Hallási illúziók 1 A hallásról általában Kocsis Zsuzsanna MTA TTK Kognitív Idegtudományi és Pszichológiai Intézet BME Kognitív Tudományi Tanszék Külső fül: fülkagyló, hallójárat irányított mikrofon A hallás

Részletesebben

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra

Részletesebben

Intelligens Rendszerek Elmélete. Biológiai érzékelők és tanulságok a technikai adaptáláshoz. Az érzékelés alapfogalmai

Intelligens Rendszerek Elmélete. Biológiai érzékelők és tanulságok a technikai adaptáláshoz. Az érzékelés alapfogalmai Intelligens Rendszerek Elmélete dr. Kutor László Biológiai érzékelők és tanulságok a technikai adaptáláshoz http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 2/1 Az érzékelés

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

A beszédfeldolgozás leegyszerűsített sémája

A beszédfeldolgozás leegyszerűsített sémája Hallás A beszédfolyamat A beszédfeldolgozás leegyszerűsített sémája BESZÉDMEGÉRTÉS Nyelvi (szintaktikai, lexikai, pragmatikai) feldolgozás BESZÉDÉSZLELÉS Nyelvi egységek (fonéma, szótag, szó) elérése HALLÁS

Részletesebben

Hangterjedés szabad térben

Hangterjedés szabad térben Hangterjeés szaba térben Bevezetés Hangszint általában csökken a terjeés során. Okai: geometriai, elnyelőés, fölfelület hatása, növényzet és épületek. Ha a hangterjeés több mint 100 méteren történik, a

Részletesebben

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István

Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

18, A zaj fogalma, hullámegyenletek, szintek, műveletek szintekkel,hangszin zaj hatása az emberi fülre..

18, A zaj fogalma, hullámegyenletek, szintek, műveletek szintekkel,hangszin zaj hatása az emberi fülre.. 18, A zaj fogalma, hullámegyenletek, szintek, műveletek szintekkel,hangszin zaj hatása az emberi fülre.. A hang valamely közegben létrejövö rezgés. Vivőközeg szerint: léghang,folyadékhang, testhang. Hanghullám:

Részletesebben

Zaj és rezgésvédelem Hallás

Zaj és rezgésvédelem Hallás Budapesti Műszaki és Gazdaságtudományi Egyetem Közlekedésmérnöki és Járműmérnöki Kar felsőfokú munkavédelmi szakirányú továbbképzés Zaj és rezgésvédelem Hallás Márkus Péter zaj és rezgésvédelmi szakértő

Részletesebben

Hogyan veheti észre, hogy halláscsökkenésben szenved?

Hogyan veheti észre, hogy halláscsökkenésben szenved? A HALLÁSVESZTÉSRŐL Hogyan veheti észre, hogy halláscsökkenésben szenved? Nem elképzelhetetlen, hogy Ön tudja meg utoljára. A hallásromlás fokozatosan következik be és lehet, hogy már csak akkor veszi észre,

Részletesebben

Audiofrekvenciás jel továbbítása optikai úton

Audiofrekvenciás jel továbbítása optikai úton Audiofrekvenciás jel továbbítása optikai úton Mechanikai rezgések. Hanghullámok. Elektromágneses rezgések. Rezgésnek nevezünk minden olyan állapotváltozást, amely időben valamilyen ismétlődést mutat. A

Részletesebben

Csapok és pálcikák. Hogyan mûködik? A RETINÁTÓL AZ AGYIG

Csapok és pálcikák. Hogyan mûködik? A RETINÁTÓL AZ AGYIG A RETINÁTÓL AZ AGYIG Hogyan mûködik? Csapok és pálcikák szem átlátszó belsô folyadékainak köszönhetôen kialakul a tárgyak képe a retinán. A fényérzékeny sejtek egy meghatározott fényingert kapnak, amely

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Tecsound anyagok használata hanggátló szerkezetekben

Tecsound anyagok használata hanggátló szerkezetekben Tecsound anyagok használata hanggátló szerkezetekben 1 Tartalom A hanggátlásról általában A terjedési utak, zavarforrások Tecsound a gyakorlatban Összehasonlítás Összefoglaló 2 A hanggátlásról általában

Részletesebben

Modern fizika vegyes tesztek

Modern fizika vegyes tesztek Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak

Részletesebben

Környezeti zajterhelés mérése és monitorozása szórakozóhelyeken

Környezeti zajterhelés mérése és monitorozása szórakozóhelyeken Környezeti zajterhelés mérése és monitorozása szórakozóhelyeken Bevezetés témaválasztás téma aktualitása, fontossága Európa-szerte az egyik legsúlyosabb környezeti probléma halláscsökkenés a népesség 10

Részletesebben

A MEGTÖRT CSEND. Muntag András december 9. L DEN + L NIGHT. A megtört csend

A MEGTÖRT CSEND. Muntag András december 9. L DEN + L NIGHT. A megtört csend A MEGTÖRT CSEND Muntag András L DEN + L NIGHT 2 1 UNBIASED ANNOYANCE (ELŐÍTÉLETMENTES ZAVARÁS) UBA d 1 N 0.3 N 1.3 10 N 1 0.25S 1 lgn 10 0.3F au 10 N10 d 1 5 0,5 S 0.11 10 24bark 0 ' N z g N z dz 10 acum

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

Definíció (hullám, hullámmozgás):

Definíció (hullám, hullámmozgás): Hullámmozgás Példák: Követ dobva a vízbe a víz felszíne hullámzani kezd. Hajó úszik a vízen, akkor hullámokat kelt. Hullámokat egy kifeszített kötélen is kelthetünk. Ha a kötés egyik végét egy falhoz kötjük,

Részletesebben

műszaki habok Kizárólagos magyarországi forgalmazó:

műszaki habok Kizárólagos magyarországi forgalmazó: Hanno -Protecto műszaki habok Protecto Kizárólagos magyarországi forgalmazó: TechFoam Hungary Kft. H-1183 Budapest, Felsőcsatári út 15. Tel: + 36 1 296 08 02 Fax: + 36 1 296 0803 e-mail: info@techfoam.hu

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

Környezet. A. Fizikai környezet. A munkakörnyezet ergonómiai értékelése

Környezet. A. Fizikai környezet. A munkakörnyezet ergonómiai értékelése A munkakörnyezet ergonómiai értékelése Területei: (Munkatevékenység) (Munkahely-elrendezés) (Használati eszközök) A. Fizikai környezet B. Szociális környezet Környezet A. Fizikai környezet 1. Világítás

Részletesebben

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak

Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Dr. habil. Czupy Imre

Dr. habil. Czupy Imre AZ ERDŐ- ÉS VADGAZDÁLKODÁSBAN ELŐFORDULÓ ERGONÓMIAI KOCKÁZATOK ÉS AZ ÁLTALUK OKOZOTT MOZGÁSSZERVI MEGBETEGEDÉSEK Dr. habil. Czupy Imre SOPRONI EGYETEM intézetigazgató egyetemi docens SZABADBAN VÉGZETT

Részletesebben

Hőtan I. főtétele tesztek

Hőtan I. főtétele tesztek Hőtan I. főtétele tesztek. álassza ki a hamis állítást! a) A termodinamika I. főtétele a belső energia változása, a hőmennyiség és a munka között állaít meg összefüggést. b) A termodinamika I. főtétele

Részletesebben

Mechanikai hullámok (Vázlat)

Mechanikai hullámok (Vázlat) Mechanikai hullámok (Vázlat) 1. A hullám ogalma, csoportosítása és jellemzői a) A mechanikai hullám ogalma b) Hullámajták c) A hullámmozgás jellemzői d) A hullámok polarizációja 2. Egydimenziós hullámok

Részletesebben

Beszédinformációs rendszerek. Alapvető beszédakusztika I.

Beszédinformációs rendszerek. Alapvető beszédakusztika I. Beszédinformációs rendszerek Alapvető beszédakusztika I. Beszédinformációs rendszerek - Alapvető beszédakusztika I. Kiss Gábor, Tulics Miklós Gábriel, Tündik Máté Ákos {kiss.gabor,tulics,tundik}@tmit.bme.hu

Részletesebben

A hőmérsékleti sugárzás

A hőmérsékleti sugárzás A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti

Részletesebben

Környezetvédelem (KM002_1)

Környezetvédelem (KM002_1) (KM002_1) 9. Zaj-, rezgés- és sugárzásvédelem 2007/2008-as tanév I. félév Dr. Zseni Anikó egyetemi docens SZE, MTK, BGÉKI, Környezetmérnöki Tanszék A hang 3 jelentéstartalma Fizikai jelenség: mechanikai

Részletesebben

A zajmérésekkel együtt elvégzett hallásvizsgálatok, azok eredményei

A zajmérésekkel együtt elvégzett hallásvizsgálatok, azok eredményei A zajmérésekkel együtt elvégzett hallásvizsgálatok, azok eredményei Dr. Gáborján Anita 2016. november 10. Semmelweis Egyetem, Fül-, Orr-, Gégészeti és Fej-, Nyaksebészeti Klinika Gyermekeknek szóló rendezvények

Részletesebben

1 A HANG, A HANGRENDSZER

1 A HANG, A HANGRENDSZER Hangosítási alapok Tartalomjegyzék A HANG, A HANGRENDSZER. A HANG. A HANGRENDSZER ALAPKONCEPCIÓJA.3 FREKVENCIA ÁTVITEL 3 ALAPMENNYISÉGEK ÉS MÉRTÉKEGYSÉGEK 3. MI A BEL ÉS A DECIBEL (DB)? 3. HANGTECHNIKÁBAN

Részletesebben

Sugárzásos hőtranszport

Sugárzásos hőtranszport Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek

Részletesebben

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István

OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók

Részletesebben

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek

Részletesebben

Rezgőmozgás, lengőmozgás, hullámmozgás

Rezgőmozgás, lengőmozgás, hullámmozgás Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus

Részletesebben