Keverési modellek. Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Keverési modellek. Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása"

Átírás

1 Illés Tibor

2 Keverési modellek Színkeverés Beton/aszfalt keverés Benzin keverés Gázkeverékek koncentrációjának a meghatározása

3 Keverési modellek matematikai jellemzői Nemlineáris sokszor nem konvex optimalizálási feladatok Nemlineáris legkisebb négyzet feladatokhoz állnak közel Érdekes struktúrával rendelkeznek Fizikai, kémiai, mérnöki ismereteket használunk fel a modellezés során Speciális algoritmusokat lehet fejleszteni a megoldásukra Duális feladatok általában nem ismertek

4 Színkeverés: bevezetés Színérzékelés Színvakság Színterek

5 Tristimulus értékek meghatározása

6 CIE xyz

7 CIE Lab koordináták kiszámítása

8 CIE Lab

9 Színkeverés: alapadatok a színterekben

10 Színkeverés: mért alapadatok

11 Színkeverés: mért adatok Reflektancia: a és a paraméterek értéke 0 és 1 közé esik

12 Színkeverés Additív Textilfestés, fedőfestékek Szubsztraktív Színes neon fényforrások Színes nyomtatványok Színkeverés feladata: adott néhány alapszín, ezek keverésével kell minél jobban megközelíteni egy előírt célszínt. Rendelkezésre álló adatok: az alapszínek néhány próbakeverékének a receptje és az előírt célszínnek bizonyos fizikai paramétereinek a mért értékei.

13 Színkeverés: mért színek receptjei

14 Színkeverés: mért alapadatok

15 Kubelka-Munk elmélet (1931) : elnyelés : szórás A reflektancia, szórás és elnyelés értékei 0 és 1 közé esnek. Elméleti fehér esetén a szórás értéke 1, elméleti fekete esetén az elnyelés értéke 1.

16 tulajdonság: két konstansos additivitás : a keverékben az i. alapszín koncentrációja Alkalmazási területe: fedőfestékek

17 Színkeverés: kérdések Hogyan határozhatjuk meg az elméleti reflektancia képletében szereplő paramétereket? (Mérnöki tapasztalat vagy matematikai modell segítségével?) Hogyan számíthatjuk ki az alapszínek esetén a szórási és elnyelési paramétereket? Mért adatokból, hogyan kapunk a modellezéshez használható adatokat?

18 Színkeverés különböző modelljei Kubelka-Munk elmélet (1931) Textil festékekre: egy konstansos modell Fedőfestékekre: két konstansos modell Mie elmélet (1908) Chandrashekar elmélet (1950) Csillagképek színelemzése

19 Színkeverés alkalmazásai Építészet Textilipar Nyomdatechnika Számítástechnika, filmgyártás Gépjárműipar (metál festékek!) Világítástechnika

20 Színkeverés operációkutatási módszerekkel Hogyan építhetjük fel a szín-receptszámítás operációkutatási modelljét a Kubelka-Munk elmélet segítségével? (Milyen modellezési illetve alkalmazási lehetőségek vannak akkor, ha nem a Kubelka-Munk elméletet használjuk?) Milyen matematikai tulajdonságai lesznek a modellünknek? Hogyan konstruálunk duál feladatot? Milyen numerikus módszer(eke)t használhatunk a megoldás során? Hogyan fejleszthetjük azokat tovább a hatékonyság és a számítási pontosság növelése érdekében? Hogyan oldjuk meg a felmerülő numerikus gondokat? Milyen programozási környezetben (pl. MATLAB) vagy milyen programnyelven készíthetjük el a számítási és optimalizálási rutinokat?

21 Szakirodalom Allen, E., Basic equations used in computer color matching, Journal of the Optical Society of America 56/9 (1966) Allen, E., Basic equations used in computer color matching, II. Tristimulus match, two-constant theory, Journal of the Optical Society of America 64/7 (1974) Allen, E., Advances in colorant formulation and shanding, Color 77 (1977) Brockett, P.L., Charnes, A., and Cooper, W.W., Estimation via unconstrained convex programming, Communications in Statistics B. Simulation and Computation 9 (1980) Charnes, A., Cooper, W.W., and Mellon, A., Blending aviation gasoline - A study in programming interdependent activities in an integrated oil company, Econometrica 20 (1952) Charnes, A., and Cooper, W.W., Constrained Kullback-Leibler estimation, generalized Cobb- Douglas balance and unconstrained convex programming, Rendiconti di Accademia Nazionale dei Lincei. Serie VIII LVIII/fasc. 4 (1975) Gall, L., Computer Color Matching, Color 73, London Hilger, 1973, pp Hunt, R.W.G., Color terminology, COLOR Research and Applications 3/2 (1978) Illés T., Mayer J., Terlaky T., Pseudoconvex optimization for a special problem of paint industry, European Journal of Operations Research, 79 (1994) Kelle, P., Optimization of mixture rate and depot capacities for asphalt mixers (in Hungarian), Alkalmazott Matematikai Lapok 5 (1979) Kuehni, R.G., Computer Colorants Formulation, Lexington Books, Lexington, MA, Lukács, Gy., Színmérés, Műszaki Könyvkiadó, Budapest, 1982.

22

Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben

Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben Mérnök informatikus mesterszak mintatanterve (GE-MI) nappali tagozat/ MSc in, full time Érvényes: 2011/2012. tanév 1. félévétől, felmenő rendszerben Tantárgy Tárgykód I. félév ősz II. félév tavasz Algoritmusok

Részletesebben

E.-Nagy Marianna. Adjunktus, Differenciálegyenletek Tanszék Matematika Intézet, Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem

E.-Nagy Marianna. Adjunktus, Differenciálegyenletek Tanszék Matematika Intézet, Természettudományi Kar Budapesti Műszaki és Gazdaságtudományi Egyetem Önéletrajz E.-Nagy Marianna Személyi adatok Név: Születési név: Publikációs név: Eisenberg-Nagy Marianna Nagy Marianna E.-Nagy Marianna Születési hely, idő: Moszkva, Szovjetunió; 1981.06.05. Állampolgárság:

Részletesebben

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán

Név KP Blokk neve KP. Logisztika I. 6 LOG 12 Dr. Kovács Zoltán Logisztika II. 6 Logisztika Dr. Kovács Zoltán Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc

Részletesebben

Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak

Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak Az emberi színlátás Forrás: http://www.normankoren.com/color_management.html Részletes irodalom: Dr. Horváth András: A vizuális észlelés

Részletesebben

Hálózati folyamok, Bolyai János Matematikai Társulat, Budapest (1969), 263 o.

Hálózati folyamok, Bolyai János Matematikai Társulat, Budapest (1969), 263 o. Alkalmazott Matematikai Lapok 27 (2010), 79-84. KLAFSZKY EMIL (19342009) Klafszky Emil, a magyar operációkutatás fontos és sokak által szeretett alakja 2009. január 31-én elhunyt. Munkásságát a 2005. évi

Részletesebben

Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak

Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak Bevezetés a színek elméletébe és a fényképezéssel kapcsolatos fogalmak Az emberi színlátás Forrás: http://www.normankoren.com/color_management.html Részletes irodalom: Dr. Horváth András: A vizuális észlelés

Részletesebben

Mérnök informatikus MSc levelező tagozat tanterve

Mérnök informatikus MSc levelező tagozat tanterve Mérnök informatikus MSc levelező tagozat tanterve Elfogadta a MIK Kari Tanácsa a 2011. április 5-i ülésén Érvényes A 2011/12-es tanévtől kezdve, a képzésben részt vevő összes hallgatókra vonatkozóan azonnali

Részletesebben

Világítástechnika I. VEMIVIB544V A fény és tulajdonságai, fotometriai alapfogalmak és színmérés

Világítástechnika I. VEMIVIB544V A fény és tulajdonságai, fotometriai alapfogalmak és színmérés Világítástechnika I. VEMIVIB544V A fény és tulajdonságai, fotometriai alapfogalmak és színmérés tartalom Fotometriai ismétlés Fénysűrűség Színmérés Sugárzáseloszlások Lambert (reflektáló) felület egyenletesen

Részletesebben

Mádi-Nagy Gergely * A feladat pontos leírása. Tekintsünk darab tetszõleges eseményt, jelöljük ezeket a következõképpen: ,...,

Mádi-Nagy Gergely * A feladat pontos leírása. Tekintsünk darab tetszõleges eseményt, jelöljük ezeket a következõképpen: ,..., Mádi-Nagy Gergely * AZ ESEMÉNYEK UNIÓJÁNAK VALÓSZÍNÛSÉGE BECSLÉS A TÖBBVÁLTOZÓS DISZKRÉT MOMENTUM PROBLÉMA SEGÍTSÉGÉVEL Az események uniója valószínûsége becslésére szolgáló elsõ fontos eredmények a Boole-

Részletesebben

Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola

Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Doktori (PhD) értekezés tézisei Irányítási struktúrák összehasonlító vizsgálata Tóth László Richárd Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Témavezetők: Dr. Szeifert Ferenc Dr.

Részletesebben

Matematika és Számítástudomány Tanszék

Matematika és Számítástudomány Tanszék Matematika és Számítástudomány Tanszék Műszaki Tudományi Kar Matematika és Számítástudomány Tanszék Tanszékvezető: Dr. Horváth Zoltán Beosztás: Főiskolai tanár Elérhetőség: Telefon: (96)/503-647 E-mail:

Részletesebben

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással

Nemkonvex kvadratikus egyenlőtlenségrendszerek pontos dualitással pontos dualitással Imre McMaster University Advanced Optimization Lab ELTE TTK Operációkutatási Tanszék Folytonos optimalizálás szeminárium 2004. július 6. 1 2 3 Kvadratikus egyenlőtlenségrendszerek Primál

Részletesebben

és alkalmazások, MSc tézis, JATE TTK, Szeged, Témavezető: Dr. Hajnal Péter

és alkalmazások, MSc tézis, JATE TTK, Szeged, Témavezető: Dr. Hajnal Péter Publikációs jegyzék Balogh János Jegyzetek, tézis: [1] Balogh J., Maximális folyamok és minimális költségű cirkulációk; algoritmusok és alkalmazások, MSc tézis, JATE TTK, Szeged, 1994. Témavezető: Dr.

Részletesebben

Színek 2013.10.20. 1

Színek 2013.10.20. 1 Színek 2013.10.20. 1 Képek osztályozása Álló vagy mozgó (animált) kép Fekete-fehér vagy színes kép 2013.10.20. 2 A színes kép Az emberi szem kb. 380-760 nm hullámhosszúságú fénytartományra érzékeny. (Ez

Részletesebben

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time)

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) (specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat

Részletesebben

OPTIKA. Szín. Dr. Seres István

OPTIKA. Szín. Dr. Seres István OPTIKA Szín Dr. Seres István Additív színrendszer Seres István 2 http://fft.szie.hu RGB (vagy 24 Bit Color): Egy képpont a piros, a kék és a zöld 256-256-256 féle árnyalatából áll össze, összesen 16 millió

Részletesebben

Színtechnika A vizuális színmérés

Színtechnika A vizuális színmérés Színtechnika A vizuális színmérés Dr. Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2011 A mérendő mennyiség: a szín (MSz 9620) Fizika: a szín meghatározott

Részletesebben

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time)

Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) Mérnök informatikus (BSc) alapszak levelező tagozat (BIL) / BSc in Engineering Information Technology (Part Time) (A képzés közös része, szakirányválasztás a 3. félév végén) Tárgykód Félév Tárgynév Tárgy

Részletesebben

A SZÍNEKRŐL III. RÉSZ A CIE színrendszer

A SZÍNEKRŐL III. RÉSZ A CIE színrendszer A SZÍNEKRŐL III. RÉSZ A CIE színrendszer Dr Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2011 A CIE színinger mérő rendszer (1931) Commission Internationale

Részletesebben

OPTIKA. Hullámoptika Színek, szem működése. Dr. Seres István

OPTIKA. Hullámoptika Színek, szem működése. Dr. Seres István OPTIKA Színek, szem működése Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu Színrendszerek: Additív színrendszer Seres István 3 http://fft.szie.hu

Részletesebben

List of publications Almási Béla, University of Debrecen

List of publications Almási Béla, University of Debrecen List of publications Almási Béla, University of Debrecen JP1./ JP2./ JP3./ JP4./ JP5./ JP6./ JP7./ JP8./ JP9./ Journal Papers A Queueing Model for a Non-Homogeneous Terminal System Subject to Breakdowns

Részletesebben

Adatfolyam alapú RACER tömbprocesszor és algoritmus implementációs módszerek valamint azok alkalmazásai parallel, heterogén számítási architektúrákra

Adatfolyam alapú RACER tömbprocesszor és algoritmus implementációs módszerek valamint azok alkalmazásai parallel, heterogén számítási architektúrákra Adatfolyam alapú RACER tömbprocesszor és algoritmus implementációs módszerek valamint azok alkalmazásai parallel, heterogén számítási architektúrákra Témavezet : Dr. Cserey György 2014 szeptember 22. Kit

Részletesebben

Logisztikai mérnök záróvizsga tételsor Módosítva 2014. június 3.

Logisztikai mérnök záróvizsga tételsor Módosítva 2014. június 3. Név KP Blokk neve KP Felelıs vizsgáztató Kombinatorikus módszerek és algoritmusok 5 MAT 10 Dr. Tuza Zsolt Diszkrét és folytonos dinamikai rendszerek matematikai alapjai 5 Matematika Dr. Hartung Ferenc

Részletesebben

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés)

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Egyszakos matematikatanár szak (régi képzés) Kötelez tárgyak, szakdolgozat (mindegyik tárgy teljesítend ) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris

Részletesebben

VEMIVIB544V A fény és tulajdonságai, fotometriai alapfogalmak és színmérés

VEMIVIB544V A fény és tulajdonságai, fotometriai alapfogalmak és színmérés Világítástechnika I. VEMIVIB544V A fény és tulajdonságai, fotometriai alapfogalmak és színmérés tartalom Fotometriai ismétlés Fénysűrűség Színmérés Sugárzáseloszlások Lambert (reflektáló) felület egyenletesen

Részletesebben

A digitális képfeldolgozás alapjai

A digitális képfeldolgozás alapjai A digitális képfeldolgozás alapjai Digitális képfeldolgozás A digit szó jelentése szám. A digitális jelentése, számszerű. A digitális információ számokká alakított információt jelent. A számítógép a képi

Részletesebben

Bevezetés az operációkutatásba A lineáris programozás alapjai

Bevezetés az operációkutatásba A lineáris programozás alapjai Bevezetés az operációkutatásba A lineáris programozás alapjai Alkalmazott operációkutatás 1. elıadás 2008/2009. tanév 2008. szeptember 12. Mi az operációkutatás (operations research)? Kialakulása: II.

Részletesebben

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata

IK Algoritmusok és Alkalmazásaik Tsz, TTK Operációkutatás Tsz. A LEMON C++ gráf optimalizálási könyvtár használata IKP-9010 Számítógépes számelmélet 1. EA IK Komputeralgebra Tsz. IKP-9011 Számítógépes számelmélet 2. EA IK Komputeralgebra Tsz. IKP-9021 Java technológiák IK Prog. Nyelv és Ford.programok Tsz. IKP-9030

Részletesebben

A színészleletet jobban közelítő színrendszer megalkotásának lehetőségei

A színészleletet jobban közelítő színrendszer megalkotásának lehetőségei A színészleletet jobban közelítő színrendszer megalkotásának lehetőségei Schanda János Pannon Egyetem Áttekintés A színrendszer definíciója A színrendszerek készítésének célja Színrendszer és színtest

Részletesebben

EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS

EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS EÖTVÖS LORÁND TUDOMÁNYEGYETEM MATEMATIKAI INTÉZET ALKALMAZOTT MATEMATIKUS MESTERKÉPZÉS SZAKLEÍRÁS BUDAPEST 2013 ALKALMAZOTT MATEMATIKUS MESTERSZAK (2013 ) Képzési idő: 4 félév A szak indításának tervezett

Részletesebben

Számítógépes grafika. Készítette: Farkas Ildikó 2006.Január 12.

Számítógépes grafika. Készítette: Farkas Ildikó 2006.Január 12. Számítógépes grafika Készítette: Farkas Ildikó 2006.Január 12. Az emberi látás Jellegzetességei: az emberi látás térlátás A multimédia alkalmazások az emberi érzékszervek összetett használatára építenek.

Részletesebben

Színmérés Firtha Ferenc, BCE, Fizika

Színmérés Firtha Ferenc, BCE, Fizika Színmérés Firtha Ferenc, BCE, Fizika 1. Színmérés: milyennek látjuk? 2. Képfeldolgozás: hol? 3. Spektroszkópia: mi? kontakt optikai: RGB színinger THE 007, 228, 20111130 távérzékelés + adatredukció: szegmentálás,

Részletesebben

Load-flow jellegű feladat a villamos rendszerirányításban

Load-flow jellegű feladat a villamos rendszerirányításban NASZVADI PÉTER Load-flow jellegű feladat a villamos rendszerirányításban TDK dolgozat 2006 Előszó: Adott egy (villamosenergiaellátást biztosító) villamoshálózat, és ezen hálózathoz csatlakozó energiatermelők

Részletesebben

Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával

Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával Nemlineáris optimalizálási problémák párhuzamos megoldása grafikus processzorok felhasználásával 1 1 Eötvös Loránd Tudományegyetem, Informatikai Kar Kari TDK, 2016. 05. 10. Tartalom 1 2 Tartalom 1 2 Optimalizálási

Részletesebben

Kiadványszerkesztő Kiadványszerkesztő

Kiadványszerkesztő Kiadványszerkesztő A /2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

A színérzetünk három összetevőre bontható:

A színérzetünk három összetevőre bontható: Színelméleti alapok Fény A fény nem más, mint egy elektromágneses sugárzás. Ennek a sugárzásnak egy meghatározott spektrumát képes a szemünk érzékelni, ezt nevezzük látható fénynek. Ez az intervallum személyenként

Részletesebben

Mezőgazdasági betakarítási folyamatok szimulációja

Mezőgazdasági betakarítási folyamatok szimulációja Mezőgazdasági betakarítási folyamatok szimulációja 1 Mezőgazdasági betakarítási folyamatok szimulációja DR. BENKŐJÁNOS SZIE Gépészmérnöki Kar, Műszaki Menedzsment Intézet A folyamat szimuláció a valós

Részletesebben

MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012

MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012 MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 0 KONFERENCIA ELŐADÁSAI Szolnok 0. május 0. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága

Részletesebben

(A képzés közös része, specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat eredményes teljesítése)

(A képzés közös része, specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat eredményes teljesítése) Mechatronikai mérnöki (BSc) alapszak nappali tagozat (BMR) / BSc in Mechatronics Engineering (Full Time) (A képzés közös része, specializáció választás a 4. félévben, specializációra lépés feltétele: az

Részletesebben

Modellek kalibrációja és a paraméterérzékenységi vizsgálat Kovács Balázs & Szanyi János

Modellek kalibrációja és a paraméterérzékenységi vizsgálat Kovács Balázs & Szanyi János Modellezés és kalibráció Modellek kalibrációja és a paraméterérzékenységi vizsgálat Kovács Balázs & Szanyi János Kovács Szanyi, 4-6 A kalibráció ( bearányosítás, jaj!) A kalibráció során a ismert valós

Részletesebben

MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI

MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI MIKOVINY SÁMUEL FÖLDTUDOMÁNYI DOKTORI ISKOLA Doktori értekezés tézisei MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI Írta: SZABÓ NORBERT PÉTER Tudományos vezető: DR. DOBRÓKA MIHÁLY

Részletesebben

1. Előadás Lineáris programozás

1. Előadás Lineáris programozás 1. Előadás Lineáris programozás Salamon Júlia Előadás II. éves gazdaság informatikus hallgatók számára Operációkutatás Az operációkutatás az alkalmazott matematika az az ága, ami bizonyos folyamatok és

Részletesebben

A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben

A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben A programozó matematikus szak kredit alapú szakmai tanterve a 2004/2005. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: nappali Képzési idő: 6 félév Az oktatás nyelve: magyar

Részletesebben

2004 Nyugat Magyarországi Egyetem, Faipari Mérnöki Kar Okleveles Könnyűipari Mérnök

2004 Nyugat Magyarországi Egyetem, Faipari Mérnöki Kar Okleveles Könnyűipari Mérnök Szakmai önéletrajz Email: szabo.orsolya@rkk.uni-obuda.hu Felsőfokú tanulmányok 2008 - Nyugat Magyarországi Egyetem, Faipari Mérnöki Kar Cziráki József Faanyagtudomány és Technológiák Doktori Iskola (doktoranduszhallgató)

Részletesebben

TECHNIKAI RENDSZEREK MODELLEZÉSE GRAFIKUS PROGRAMOZÁSÚ NYELV ALKALMAZÁSÁVAL

TECHNIKAI RENDSZEREK MODELLEZÉSE GRAFIKUS PROGRAMOZÁSÚ NYELV ALKALMAZÁSÁVAL Dr. Lipovszki György TECHNIKAI RENDSZEREK MODELLEZÉSE GRAFIKUS PROGRAMOZÁSÚ NYELV ALKALMAZÁSÁVAL ABSTRACT A new promising member of the high level programming languages is the graphical programming language.

Részletesebben

Diszkrét, egészértékű és 0/1 LP feladatok

Diszkrét, egészértékű és 0/1 LP feladatok Diszkrét, egészértékű és 0/1 LP feladatok In English Integer Programming - IP Zero/One (boolean) programming 2007.03.12 Dr. Bajalinov Erik, NyF MII 1 Diszkrét és egészértékű változókat tartalmazó feladatok

Részletesebben

Design of Programming V 5 -

Design of Programming V 5 - Gazdaságinformatikus (BSc) alapszak nappali tagozat (BGI) / BSc programme in Business Information Technology (Full Time) A mintatantervben szereplő tárgyakon felül a tanulmányok során további 10 kredit

Részletesebben

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek

TANTÁRGYI ÚTMUTATÓ. Döntési módszerek III. évfolyam szakirány BA TANTÁRGYI ÚTMUTATÓ Döntési módszerek TÁVOKTATÁS Tanév 2014/2015 II- félév A KURZUS ALAPADATAI Tárgy megnevezése: Döntési módszerek Tanszék: Matematika-Statisztika Tantárgyfelelős

Részletesebben

Mérés és modellezés 1

Mérés és modellezés 1 Mérés és modellezés 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni kell

Részletesebben

Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images

Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images Finite Element Methods for Active Contour Models and Balloons for 2D and 3D Images Laurent D. COHEN and Isaac COHEN Prezentáció: Kiss Zoltán, SZTE 2004. Motiváció 1) Objektum felszínek kijelölése szegmentációs

Részletesebben

Numerikus matematika vizsga

Numerikus matematika vizsga 1. Az a = 2, t = 4, k = 3, k + = 2 számábrázolási jellemzők mellett hány pozitív, normalizált lebegőpontos szám ábrázolható? Adja meg a legnagyobb ábrázolható számot! Mi lesz a 0.8-hoz rendelt lebegőpontos

Részletesebben

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István

OPTIKA. Hullámoptika Diszperzió, interferencia. Dr. Seres István OPTIKA Diszperzió, interferencia Dr. Seres István : A fény elektromágneses hullám A fehér fény összetevői: Seres István 2 http://fft.szie.hu : A fény elektromágneses hullám: Diszperzió: Különböző hullámhosszúságú

Részletesebben

Multicast és forgalomkötegelés többrétegû hálózatokban

Multicast és forgalomkötegelés többrétegû hálózatokban Multicast és forgalomkötegelés többrétegû hálózatokban SOPRONI PÉTER, PERÉNYI MARCELL, CINKLER TIBOR {soproni, perenyim, cinkler}@tmit.bme.hu BME Távközlési és Médiainformatikai Tanszék Lektorált Kulcsszavak:

Részletesebben

LED-es világítástechnika 2011 januári állapot

LED-es világítástechnika 2011 januári állapot LED-es világítástechnika 2011 januári állapot Az utóbbi öt-hat év világítástechnikai slágertémája a LED-es világítás. A némelykor túlzó várakozás felfokozott hangulata sokszor eredményez elhamarkodott

Részletesebben

Biomatika Intézet Neumann János Informatikai Kar Óbudai Egyetem. Dr. Kozlovszky Miklós egyetemi docens, intézetigazgató, OE NIK

Biomatika Intézet Neumann János Informatikai Kar Óbudai Egyetem. Dr. Kozlovszky Miklós egyetemi docens, intézetigazgató, OE NIK Biomatika Intézet Neumann János Informatikai Kar Óbudai Egyetem Dr. Kozlovszky Miklós egyetemi docens, intézetigazgató, OE NIK Bevezetés Látványos fejlődés robotika, orvosi informatika területeken Korábban

Részletesebben

MÉRNÖK INFORMATIKUS MSc SZAK NAPPALI TAGOZAT Szakvezető: Dr. Friedler Ferenc egyetemi tanár, tel: (88) , I épület 922. szoba. Fogadóóra: megbes

MÉRNÖK INFORMATIKUS MSc SZAK NAPPALI TAGOZAT Szakvezető: Dr. Friedler Ferenc egyetemi tanár, tel: (88) , I épület 922. szoba. Fogadóóra: megbes Mérnök informatikus MSc szak nappali tagozat tanterve Elfogadta a MIK Kari Tanácsa a 2007. december 20-ai ülésén Érvényes: A 2007/08-as tanévtől Dr. Friedler Ferenc szakvezető Dr. Hartung Ferenc dékánhelyettes

Részletesebben

Roska Tamás (1940-2014)

Roska Tamás (1940-2014) Roska Tamás (1940-2014) Roska Tamás Bólyai és Szécsényi díjas akadémikus halála a magyar tudomány pótolhatatlan vesztesége nyilatkozta a Magyar Tudományos Akadémia elnöke. Négy éve sincs, hogy 2010 szeptemberében

Részletesebben

Szakmai önéletrajz. Hégely László 1119 Budapest, Hengermalom út 2/d. Mobiltelefonszám: +36-70-635-0850 hegelyl@hotmail.com

Szakmai önéletrajz. Hégely László 1119 Budapest, Hengermalom út 2/d. Mobiltelefonszám: +36-70-635-0850 hegelyl@hotmail.com Szakmai önéletrajz Személyes adatok Név: Hégely László Cím: 1119 Budapest, Hengermalom út 2/d. Mobiltelefonszám: +36-70-635-0850 E-mail: hegelyl@hotmail.com Születési hely: Budapest Születési idı: 1986.

Részletesebben

Nyelvi hálózatok és a mentális lexikon

Nyelvi hálózatok és a mentális lexikon Pannon Egyetem Nyelvtudományi Doktori Iskola Doktori értekezés tézisei Kovács László Nyelvi hálózatok és a mentális lexikon A mentális lexikon (gazdasági) szaknyelvi és (általános) hálózatos szerveződésének

Részletesebben

Egyetemi szintű Közgazdasági programozó matematikus szak nappali tagozat (GEEP)

Egyetemi szintű Közgazdasági programozó matematikus szak nappali tagozat (GEEP) Egyetemi szintű Közgazdasági programozó matematikus szak nappali tagozat (GEEP) Tárgykód Félév Tárgynév Ea. Gy. Köv. Kr. GEIAL211N 1 Programozás alapjai I. 2 2 G 5 - METES001GE1 1 Testnevelés 0 2 A 0 GEMAN151N

Részletesebben

Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék

Dr. Kalló Noémi. Termelésszervezés, Termelési és szolgáltatási döntések elemzése. egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés, Termelési és szolgáltatási döntések elemzése egyetemi adjunktus Menedzsment és Vállalatgazdaságtan Tanszék Termelésszervezés 17.Ismertesse az anyagszükséglet-tervezés input információit,

Részletesebben

Villamos gáztisztítók - mit hoz a jövı?

Villamos gáztisztítók - mit hoz a jövı? Villamos gáztisztítók - mit hoz a jövı? Dr. Kiss István BME Villamos Energetika Tanszék Kiss.istvan@vet.bme.hu Az elektrosztatikus porleválasztó (ESP) BME Department of Electric Power Engineering High

Részletesebben

FET Info Day. Brüsszel, 2014. jan. 20.

FET Info Day. Brüsszel, 2014. jan. 20. FET Info Day Brüsszel, 2014. jan. 20. I. FET H2020-ban A FET az elsı, kiválósági pillérben helyezkedik el, költségvetése 2.7 milliárd EUR. A FET ek olyan kutatási projekteket támogatnak, melyek megerısítik

Részletesebben

DEMOGRÁFIA 3. ÉVF. 2. S Z Á M BUDAPEST

DEMOGRÁFIA 3. ÉVF. 2. S Z Á M BUDAPEST DEMOGRÁFIA N É P E S S É G T U D O M Á N Y I F O L Y Ó I R A T 3. ÉVF. 2. S Z Á M BUDAPEST 19 6 0 A SZE R K E SZ TŐ B IZ O T T S Á G TAGJAI: ACSÁDI GYÖRGY, BARS Y GYULA, ERD EI FERENC, HAH N GÉZA, HUSZÁR

Részletesebben

A színtévesztés javításáról - közérthetően

A színtévesztés javításáról - közérthetően A színtévesztés javításáról - közérthetően E cikkben most tényleg közérthetően próbálom ismertetni a korrekció elvét és gyakorlatát. Akit a téma mélyebben érdekel, olvassa el a cikk keretes részét is,

Részletesebben

Oktatói önéletrajz. Dr. Tasnádi Attila. Karrier. egyetemi tanár. Közgazdaságtudományi Kar Matematika Tanszék. Felsőfokú végzettségek:

Oktatói önéletrajz. Dr. Tasnádi Attila. Karrier. egyetemi tanár. Közgazdaságtudományi Kar Matematika Tanszék. Felsőfokú végzettségek: Dr. Tasnádi Attila egyetemi tanár Közgazdaságtudományi Kar Matematika Tanszék Karrier Felsőfokú végzettségek: 1988-1993 Budapesti Közgazdaságtudományi Egyetem, közgazdász 1990-1994 Eötvös Loránd Tudományegyetem,

Részletesebben

A lineáris optimalizálás rugalmas indexválasztási szabályainak elméletéről és gyarkorlatáról

A lineáris optimalizálás rugalmas indexválasztási szabályainak elméletéről és gyarkorlatáról A lineáris optimalizálás rugalmas indexválasztási szabályainak elméletéről és gyarkorlatáról Nagy Adrienn A doktori disszertáció tézisei Témavezető: Illés Tibor Egyetemi Docens, PhD Témavezető: Kovács

Részletesebben

Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak

Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Termelési és szolgáltatási döntések elemzése Vezetés és szervezés mesterszak Dr. Koltai Tamás egyetemi tanár Menedzsment és Vállalatgazdaságtan Tanszék Tematika Kvantitatív eszközök használata Esettanulmányok

Részletesebben

Zárójelentés a "Mikro-kontinuumok képlékeny alakváltozása" című OTKA kutatási témához

Zárójelentés a Mikro-kontinuumok képlékeny alakváltozása című OTKA kutatási témához Zárójelentés a "Mikro-kontinuumok képlékeny alakváltozása" című OTKA kutatási témához A kutatás eredményeinek ismertetése A kutatások elsősorban a mikropoláris kontinuumok rugalmas-képlékeny alakváltozás

Részletesebben

Projektfeladatok 2014, tavaszi félév

Projektfeladatok 2014, tavaszi félév Projektfeladatok 2014, tavaszi félév Gyakorlatok Félév menete: 1. gyakorlat: feladat kiválasztása 2-12. gyakorlat: konzultációs rendszeres beszámoló a munka aktuális állásáról (kötelező) 13-14. gyakorlat:

Részletesebben

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés)

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés) OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Matematikus szak (régi képzés) Kötelezı tárgyak, diplomamunka (mindegyik tárgy teljesítendı) M1101 Lineáris és analitikus geometria 1. M1102 Lineáris és analitikus

Részletesebben

Gépészmérnöki alapszak (BSc) levelező tagozat (BGL) / BSc in Mechanical Engineering (Part Time)

Gépészmérnöki alapszak (BSc) levelező tagozat (BGL) / BSc in Mechanical Engineering (Part Time) Gépészmérnöki alapszak (BSc) levelező tagozat (BGL) / BSc in Mechanical Engineering (Part Time) (A képzés közös része, specializáció választás a 4. félévben, specializációra lépés feltétele: az egyik szigorlat

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2016/17 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

IRREGULÁRIS SZINTÉVESZTÉSI TIPUSOK

IRREGULÁRIS SZINTÉVESZTÉSI TIPUSOK II. Lux et Color Vespremiensis konferencia, Veszprém, 2003.10.16. IRREGULÁRIS SZINTÉVESZTÉSI TIPUSOK Wenzel Klára - Samu Krisztián Budapesti Műszaki és Gazdaságtudományi Egyetem Aliter in theoria, aliter

Részletesebben

B8. A CIE 1931 SZÍNINGER-MÉRŐ RENDSZER ISMERTETÉSE;

B8. A CIE 1931 SZÍNINGER-MÉRŐ RENDSZER ISMERTETÉSE; B8. A CIE 1931 SZÍNINGER-MÉRŐ RENDSZER ISMERTETÉSE; A CIE DIAGRAM, A SZÍNEK ÁBRÁZOLÁSA A DIAGRAMBAN;A NYOMTATÁSBAN REPRODUKÁLHATÓ SZÍNTARTOMÁNY SZÍNRENDSZEREK A színrendszerek kialakításának célja: a színek

Részletesebben

Intelligens Induktív Érzékelők

Intelligens Induktív Érzékelők Intelligens Induktív Érzékelők Írta: Pólik Zoltán Konzulensek: Dr. Kuczmann Miklós Tanszékvezető egyetemi tanár Automatizálási Tanszék, Széchenyi István Egyetem Dr. Kántor Zoltán Fejlesztési csoportvezető

Részletesebben

Fénytechnika. A szem, a látás és a színes látás. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem

Fénytechnika. A szem, a látás és a színes látás. Dr. Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Fénytechnika A szem, a látás és a színes látás Dr. Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013 Mi a szín? (MSz 9620) Fizika: a szín meghatározott hullámhosszúságú

Részletesebben

Étkezési javaslat automatizált generálása táplálkozási és életmód-tanácsadó rendszerhez

Étkezési javaslat automatizált generálása táplálkozási és életmód-tanácsadó rendszerhez Étkezési javaslat automatizált generálása táplálkozási és életmód-tanácsadó rendszerhez Gaál Balázs, Vassányi István, Dr. Kozmann György, Veszprémi Egyetem A dolgozat egy automatizált menügeneráló modul

Részletesebben

LÁTÁS FIZIOLÓGIA. A szem; a színes látás. Dr Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem

LÁTÁS FIZIOLÓGIA. A szem; a színes látás. Dr Wenzel Klára. egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem LÁTÁS FIZIOLÓGIA A szem; a színes látás Dr Wenzel Klára egyetemi magántanár Budapesti Műszaki és Gazdaságtudományi Egyetem Budapest, 2013 Mi a szín? (MSz 9620) Fizika: a szín meghatározott hullámhosszúságú

Részletesebben

Operációkutatás II. Tantárgyi útmutató

Operációkutatás II. Tantárgyi útmutató Módszertani Intézeti Tanszék Gazdinfo Nappali Operációkutatás II. Tantárgyi útmutató 2015/16 tanév II. félév 1/4 Tantárgy megnevezése: Operációkutatás II. Tantárgy kódja: OPKT2KOMEMM Tanterv szerinti óraszám:

Részletesebben

SZÁMÍTÁSOK A TÁBLÁZATBAN

SZÁMÍTÁSOK A TÁBLÁZATBAN SZÁMÍTÁSOK A TÁBLÁZATBAN Az Excelben az egyszerű adatok bevitelén kívül számításokat is végezhetünk. Ezeket a cellákba beírt képletek segítségével oldjuk meg. A képlet: olyan egyenlet, amely a munkalapon

Részletesebben

A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben

A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben A programozó matematikus szak kredit alapú szakmai tanterve a 2003/2004. tanévtől, felmenő rendszerben Szak neve: programozó matematikus szak Tagozat: levelező Képzési idő: 6 félév Az oktatás nyelve: magyar

Részletesebben

Intervallum Módszerek Alkalmazása Vegyészmérnöki Számításokban. Tézisfüzet

Intervallum Módszerek Alkalmazása Vegyészmérnöki Számításokban. Tézisfüzet BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VEGYÉSZMÉRNÖKI ÉS BIOMÉRNÖKI KAR OLÁH GYÖRGY DOKTORI ISKOLA Intervallum Módszerek Alkalmazása Vegyészmérnöki Számításokban Tézisfüzet Szerzı: Baharev Ali,

Részletesebben

Mérés és modellezés Méréstechnika VM, GM, MM 1

Mérés és modellezés Méréstechnika VM, GM, MM 1 Mérés és modellezés 2008.02.04. 1 Mérés és modellezés A mérnöki tevékenység alapeleme a mérés. A mérés célja valamely jelenség megismerése, vizsgálata. A mérés tervszerűen végzett tevékenység: azaz rögzíteni

Részletesebben

Információtartalmú elemzések a közlekedéseredetű szennyezőanyagok hatásvizsgálatánál

Információtartalmú elemzések a közlekedéseredetű szennyezőanyagok hatásvizsgálatánál Információtartalmú elemzések a közlekedéseredetű szennyezőanyagok hatásvizsgálatánál Kozma-Bognár Veronika 1 Szabó Rita 2 Berke József 2 1 ügyvivő szakértő, Pannon Egyetem, Meteorológia és Vízgazdálkodás

Részletesebben

Grid felhasználás: alkalmazott matematika

Grid felhasználás: alkalmazott matematika Grid felhasználás: alkalmazott matematika Konvex testek egyensúlyi osztályozása a Saleve keretrendszerrel Kápolnai Richárd 1 Domokos Gábor 2 Szabó Tímea 2 1 BME Irányítástechnika és Informatika Tanszék

Részletesebben

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés)

OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés) OKLEVÉLKÖVETELMÉNYEK MÓDOSÍTOTT VÁLTOZAT Kétszakos matematikatanár szak (régi képzés) Kötelezı tárgyak, szakdolgozat (mindegyik tárgy teljesítendı, a szakdolgozat írható a másik szakból) kód tárgynév kredit

Részletesebben

OTKA Zárójelentés 2006-2010. Publikációk 2009-2010.

OTKA Zárójelentés 2006-2010. Publikációk 2009-2010. OTKA Zárójelentés 2006-2010. Publikációk 2009-2010. ZÁRÓJELENTÉS szakmai beszámoló OTKA-azonosító: 63591 Típus: K Szakmai jelentés: 2010. 04. 02. Vezető kutató: Illés Béla Kutatóhely: Anyagmozgatási és

Részletesebben

SZÁMÍTÓGÉPES VIZUALIZÁCIÓ A MATEMATIKA TANÍTÁSÁBAN: ESZKÖZÖK, FEJLESZTÉSEK, TAPASZTALATOK

SZÁMÍTÓGÉPES VIZUALIZÁCIÓ A MATEMATIKA TANÍTÁSÁBAN: ESZKÖZÖK, FEJLESZTÉSEK, TAPASZTALATOK SZÁMÍTÓGÉPES VIZUALIZÁCIÓ A MATEMATIKA TANÍTÁSÁBAN: ESZKÖZÖK, FEJLESZTÉSEK, TAPASZTALATOK Karsai János, karsai@silver.szote.u-szeged.hu, Forczek Erzsébet, forczek@dmi.szote.u-szeged.hu, Nyári Tibor, nyari@dmi.szote.u-szeged.hu

Részletesebben

Logisztikai mérnöki mesterszak (MSc), nappali tagozat (ML) / MSc Programme in Logistics Engineering

Logisztikai mérnöki mesterszak (MSc), nappali tagozat (ML) / MSc Programme in Logistics Engineering Logisztikai mérnöki mesterszak (MSc), nappali tagozat () / MSc Programme in Logistics Engineering Őszi kezdés Tárgykód Félév Tárgynév Tárgy angol neve Ea. /Gy./ Köv./ Kr. ETF (ősz) Decisionmaking Theory

Részletesebben

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet

Óbudai Egyetem Neumann János Informatikai Kar. Intelligens Mérnöki Rendszerek Intézet Óbudai Egyetem Neumann János Informatikai Kar Intelligens Mérnöki Rendszerek Intézet 1034 Budapest, Bécsi út 96/B Tel., Fax:1/666-5544,1/666-5545 http://nik.uni-obuda.hu/imri Az 2004-ben alakult IMRI (BMF)

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet

VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet VALÓS HULLÁMFRONT ELŐÁLLÍTÁSA A SZÁMÍTÓGÉPES ÉS A DIGITÁLIS HOLOGRÁFIÁBAN PhD tézisfüzet PAPP ZSOLT Budapesti Műszaki és Gazdaságtudományi Egyetem Fizika Tanszék 2003 1 Bevezetés A lézerek megjelenését

Részletesebben

3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor

3. előadás. Termelési és optimalizálási feladatok. Dr. Szörényi Miklós, Dr. Kallós Gábor 3. előadás Termelési és optimalizálási feladatok Dr. Szörényi Miklós, Dr. Kallós Gábor 2014 2015 1 Tartalom Matematikai alapok Matematikai modell Fontosabb feladattípusok Érzékenységvizsgálat Fontos fogalmak

Részletesebben

Süle Zoltán publikációs listája

Süle Zoltán publikációs listája Süle Zoltán publikációs listája Statisztikai összegzés Referált nemzetközi folyóiratcikkeim száma: 3 (+1) Nemzetközi konferenciakiadványban megjelent publikációim száma: 14 Hazai konferenciakiadványban

Részletesebben

SVM (közepesen mély bevezetés)

SVM (közepesen mély bevezetés) SVM (közepesen mély bevezetés) Adatbányászat és Keresés Csoport, MTA SZTAKI dms.sztaki.hu Szabó Adrienn 2013. április 4. Bevezetés Alapötlet Jelölések Maximum margin classier Optimalizálási feladat Tartalom

Részletesebben

Hol tudok elhelyezkedni matekos diplomámmal?

Hol tudok elhelyezkedni matekos diplomámmal? Hol tudok elhelyezkedni matekos diplomámmal? Hallgatóink gyakran kérdezik tőlünk, hogy diplomájuk megszerzése után milyen elhelyezkedési lehetőségeik vannak a munkaerőpiacon. Annak érdekében, hogy e kérdésre

Részletesebben

LINEÁRIS ALGEBRA ALKALMAZÁSA A KRITIKUS INFRASTRUKTÚRA KOCKÁZATÁNAK KEZELÉSÉBEN

LINEÁRIS ALGEBRA ALKALMAZÁSA A KRITIKUS INFRASTRUKTÚRA KOCKÁZATÁNAK KEZELÉSÉBEN VIII. Évfolyam 4. szám - 203. december Gyarmati József gyarmati.jozsef@uni-nke.hu LINEÁRIS ALGEBRA ALKALMAZÁSA A KRITIKUS INFRASTRUKTÚRA KOCKÁZATÁNAK KEZELÉSÉBEN Absztrakt A kockázatok becslése meghatározó

Részletesebben

Az alkotmányos demokrácia alapintézményei 01 Elmélet

Az alkotmányos demokrácia alapintézményei 01 Elmélet Tárgykód Tárgynév Kurzuskód Kurzustípus Alkotmányjogi és Politikatudományi NGM_JE002_1 Emberi jogok és közösség 01 Elmélet Alkotmányjogi és Politikatudományi N_PJ48 Az alkotmányos demokrácia alapintézményei

Részletesebben

Operációkutatás és számítástechnika a mezőgazdaságban

Operációkutatás és számítástechnika a mezőgazdaságban Tóth József Operációkutatás és számítástechnika a mezőgazdaságban Tudományos Konferenciák Előadásai Virágos út a semmibe? Debrecen 2013 Előszó Ezt a könyvet, amely az Operációkutatás és számítástechnika

Részletesebben