Országos kompetenciamérés 2010 Feladatok és jellemzőik. matematika 10. évfolyam

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Országos kompetenciamérés 2010 Feladatok és jellemzőik. matematika 10. évfolyam"

Átírás

1 21

2

3 Országos kompetenciamérés 21 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 211

4

5 1. ÉVFOLYAM A kompetenciamérésekről 21 májusában immár nyolcadik alkalommal került sor az Országos kompetenciamérésre, amelyen minden 6., 8. és 1. évfolyamos tanuló részt vett, és amelynek célja a diákok szövegértési képességeinek és matematikai eszköztudásának a feltérképezése. A kompetenciamérés eredményeiről minden telephely, iskola és fenntartó jelentést kap, amelynek segítségével elhelyezheti magát az országos képességskálán, és összehasonlíthatja eredményeit a hozzá hasonló telephelyeken, iskolákban és fenntartónál tanuló diákok eredményeivel. Emellett az iskolák egyéni elemzéseket is készíthetnek, ennek segítségével kérdésenként is elemezhetik az eredményeket. Az Országos kompetenciamérés 21 Feladatok és jellemzőik kötetek célja Az a szándékunk, hogy az iskola eredményeit bemutató grafikonok mellett a lehető legteljesebb mértékben megismertessük a tanárokat, intézményvezetőket és oktatáspolitikusokat a mérésben rejlő lehetőségekkel, és az eredmények helyes interpretálásához minél alaposabb segítséget biztosítsunk. E célt szolgálja a kompetenciamérés 27 elején megjelent Tartalmi kerete, 1 valamint az Országos kompetenciamérés 21 fenntartói, iskolai és telephelyi jelentései, amelyek megtekinthetők a illetve a hu/okmfit honlapon. A feladatokat bemutató kötetek célja az, hogy megismertessék a tanárokat az egyes feladatok mérési céljaival és statisztikai paramétereivel. A diákok feladatonkénti eredményeit elemezve a tanárok képet kaphatnak arról, hogy diákjaik milyen problémákkal, hiányosságokkal küzdenek, melyek azok a területek, amelyekre nagyobb figyelmet kell fordítaniuk a jövőben, és milyen fejlesztési feladatokkal kell megbirkózniuk. A feladatokat tartalmazó kötetek az országos eredmények bemutatásával mindehhez keretet és viszonyítási pontokat nyújtanak. A kötetből kiderül, hogy mely feladatok okozták a legtöbb gondot a diákoknak, melyek esetében választottak sokan valamilyen tipikusan rossz választ, és melyek nem okoztak problémát a diákok többségének. A kötet felépítése Ez a kötet a 21. évi Országos kompetenciamérés 1. évfolyamos tesztfüzetének matematikafeladatait (itemeit) tartalmazza. Az itemek olyan sorrendben találhatók a kötetben, ahogyan az A) tesztfüzetben szerepeltek. A kötet végén található mellékletben táblázatos formában is feltüntettük az itemek jellemzőit. A kötetben minden egyes itemről a következő információk szerepelnek: A kérdés (item), ahogyan a tesztfüzetben szerepelt. Az item javítókulcsa. A mérési cél: az item besorolása a Tartalmi keretben rögzített csoportosítási szempontok alapján; rövid leírás arról, hogy pontosan milyen műveleteket kell a diáknak elvégeznie az item helyes megválaszolásához. 1 Balázsi Ildikó Felvégi Emese Rábainé Szabó Annamária Szepesi Ildikó: OKM 26 Tartalmi keret. sulinova Kht., Budapest, 26. 3

6 MATEMATIKA Az item statisztikai jellemzői: 2 az item tesztelméleti paraméterei (a kérdés nehézsége és meredeksége, valamint kétpontos item esetén a lépésnehézségek); feleletválasztásos feladatok tippelési paramétere; az item nehézségi szintje; az egyes kódok előfordulási aránya; az item lehetséges kódjainak pontbiszeriális korrelációja; az item százalékos megoldottsága országosan és településtípusonként, valamint az egyes tanulói képességszinteken. Képességszintek a 1. évfolyamos matematikateszt esetében Az adatok elemzésében fontos szerepet játszanak a szakmai és statisztikai szempontok alapján meghatározott képességszintek. Ezek segítségével a tanulókat képességük szerint kategóriákba sorolva képet tudunk adni arról, hogy milyen képességeket tudhatnak magukénak a szintbe tartozók, és mi az, amiben elmaradnak a magasabb szinten található tanulóktól. A képességszintek kialakításának statisztikai hátterét az 1. melléklet mutatja be. Képességszint A képességszint alsó határa A szintet elérő tanulók képességei újszerű és/vagy többszörösen összetett szituációban megjelenő, önálló megoldási stratégiát igénylő, gyakran többlépéses feladatok megoldása összetett problémák vizsgálatából és modellezéséből nyert információk értelmezése, általánosítása és alkalmazása különböző információforrások és reprezentációk összekapcsolása és egymásnak való megfeleltetése fejlett matematikai gondolkodás és érvelés a szimbolikus és formális matematikai műveletek és kapcsolatok magas színvonalú alkalmazásával újszerű problémaszituációk megoldása új megoldási módok és stratégiák megalkotása műveleti lépések, az eredmények és azok értelmezésével kapcsolatos gondolatok pontos megfogalmazása az eredményeknek az eredeti probléma szempontjából való vizsgálata, értelmezése újszerű, komolyabb értelmezést igénylő szövegkörnyezetben megjelenő, önálló stratégiával megoldható többlépéses feladatok megoldása modellalkotás összetett problémaszituációra, a modell alkalmazhatósági feltételeinek meghatározása, majd annak helyes alkalmazása modellekhez kapcsolódó összetett problémák lehetséges megoldási módjainak kiválasztása, összehasonlítása és értékelése a kiválasztott megoldási stratégia és matematikai módszer értékelése, az elvégzett lépések végrehajtása széles körű és jó színvonalú gondolkodási és érvelési képességek, készségek különböző adatmegjelenítések, szimbolikus és formális leírások és problémamegjelenítések nagy biztonsággal való értelmezése és kezelése 4 2 A statisztikai jellemzők képzési szabályait az 1. melléklet ismerteti.

7 1. ÉVFOLYAM Képességszint A képességszint alsó határa A szintet elérő tanulók képességei újszerű szituációban megjelenő többlépéses, önálló stratégia kidolgozását igénylő, különböző módon megjelenített összefüggéseket tartalmazó feladatok megoldása problémákhoz egyszerű modell önálló megalkotása, majd annak helyes alkalmazása rugalmas érvelés és reflektálás az elvégzett lépésekre értelmezés és gondolatmenet megalkotása és megfogalmazása összetettebb vagy kevésbé ismerős, újszerű szituációjú, több lépéses feladatok megoldása konkrét problémaszituációkat egyértelműen leíró modellek hatékony alkalmazása, a modellek alkalmazhatósági feltételeinek meghatározása. különböző, akár szimbolikus adatmegjelenítések kiválasztása és egyesítése, azok közvetlen összekapcsolása a valóságos szituációk különböző aspektusaival értelmezés és gondolatmenet röviden leírása ismerős kontextusban megjelenő egy-két lépéses problémák megoldása egyértelműen leírt matematikai eljárások elvégzése, amelyek szekvenciális döntési pontokat is magukban foglalhatnak egyszerű problémamegoldási stratégiák kiválasztása és alkalmazása különböző információforrásokon alapuló adatmegjelenítések értelmezése és alkalmazása, majd ezek alapján érvek megalkotása a legalapvetőbb, közismert matematikai fogalmak és eljárások ismerete a kontextus alapján közvetlenül megérthető problémaszituációk értelmezése egyetlen információforrásból a szükséges információk megszerzése egyszerű vagy szimplán matematikai kontextusban megjelenő, jól körülírt, egylépéses problémák megoldása egyszerű, jól begyakorolt algoritmusok, képletek, eljárások és megoldási technikák alkalmazása egyszerűen érvelés és az eredmények szó szerint értelmezése ismerős, főként matematikai szituációban, gyakran kontextus nélküli helyzetben feltett matematikai kérdések megválaszolása egyértelmű, jól körülírt és minden szükséges információt tartalmazó feladatok megoldása közvetlen utasításokat követve rutinszerű eljárások végrehajtása a feladat kontextusából nyilvánvalóan következő lépések végrehajtása 5

8 MATEMATIKA A 1. évfolyamos matematikateszt általános jellemzése A teszt általános jellemzői A felmérés tesztfüzeteit a Tartalmi keretben megfogalmazott szempontok szerint állítottuk össze. A felmérést minden 6., 8. és 1. évfolyamos diák megírta, majd 1. évfolyamon a központi elemzés elkészítéséhez minden intézmény minden tanulójától összegyűjtöttük a kitöltött tesztfüzeteket. Az 1. táblázat a 1. évfolyamos matematikateszt néhány alapvető jellemzőjét mutatja, a 2. táblázat pedig azt ismerteti, hogy a Tartalmi keretben definiált gondolkodási műveletek és tartalmi területek szerint hogyan oszlanak meg a feladatok. Az itemek száma 55 A központi elemzésbe bevont kitöltött tesztfüzettel rendelkező tanulók száma Cronbach-alfa,89 Országos átlag (standard hiba) (,4) Országos szórás (standard hiba) 22 (,4) 1. táblázat: A 1. évfolyamos matematikateszt néhány jellemzője Gondolkodási műveletek Tartalmi területek Mennyiségek és műveletek Hozzárendelések és összefüggések Alakzatok síkban és térben Események statisztikai jellemzői és valószínűsége Tényismeret és műveletek Modellalkotás, integráció Komplex megoldások és kommunikáció Tartalmi terület összesen Műveletcsoport összesen 2. táblázat: A feladatok megoszlása a gondolkodási műveletek és tartalmi területek szerint a 1. évfolyamos matematikatesztben 6

9 A feladatok megoszlása a képességskálán 1. ÉVFOLYAM Az 1. ábra az itemek és a diákok megoszlását mutatja a képességskálán. Az ábrán a feladatok nehézségi szintjeit és a diákok képességszintjeit is feltüntettük. Láthatjuk, hogy a mérésben könnyű és nehéz feladatok egyaránt találhatók, az itemekkel igyekeztünk minél szélesebb tartományban lefedni a képességskálát. Ily módon a kiemelkedően tehetséges és a gyenge diákokat is megbízhatóbban tudjuk elhelyezni a képességskálán. Standardizált képességpont MG252 MG1332 MG221 MG MG4172 MG2652 MG4391 MG251 MG3571 MG2811 MG3893 MG2181 MG2951 MG2421 MG242 MG2423 MG271 MG2521 MG1931 MG762 MG1641 MG171 ME431 MG241 MG11 MG32 MG1352 MG62 MG4573 MG4171 ME711 MG1361 MG761 MG1291 MG453 MG452 MG91 MG4141 MG1281 MG61 MG3111 MG1282 MG3821 MG MG MG2651 MG1731 MG31 MG2281 MG371 MG2661 MG MG Adott nehézségű feladatok Adott képességpontot elért diákok száma 1. ábra: Az itemek és diákok megoszlása a képességskálán, 1. évfolyam, matematika 7

10 MATEMATIKA 8

11 1. ÉVFOLYAM A feladatok ismertetése 9

12 MATEMATIKA MG2281 Mauna Kea 1/93. FELADAT: mauna kea MG2281 A Föld egyik legnagyobb hegye a Hawaii-szigeteken található Mauna Kea. A hegy érdekessége, hogy bár teljes magassága 1 2 méter, ennek csak 42%-a található a vízfelszín felett, a többi része a vízfelszín alatt helyezkedik el. Az adatok alapján melyik ábra szemléltetheti a Mauna Kea hegyet? Satírozd be a helyes ábra betűjelét! A B C D Mauna Kea mg2281 Az adatok alapján melyik ábra szemléltetheti a Mauna Kea hegyet? Satírozd be a helyes JAVÍTÓKULCS ábra betűjelét! Helyes válasz: B 1

13 1. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Mennyiségek és műveletek Tényismeret és rutinműveletek A feladat leírása: A feladat szövegében megjelölt százalékos arány képi ábrázolását kell a tanulóknak kiválasztaniuk a megadott ábrák közül. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,15,8 Standard nehézség ,8 Nehézségi szint 2 Lehetséges kódok: x 8 9 1, ,3, -,3 -,6,25 -,1 -,7 -,15 -,13 -, Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 68,3,16 1. szint alatt 32,3 1,83 8 évf. gimnázium 78,6,82 1. szint 43,1,69 6 évf. gimnázium 77,9,57 2. szint 53,5,43 4 évf. gimnázium 73,1,24 3. szint 63,4,31 Szakközépiskola 67,6,24 4. szint 71,4,25 Szakiskola 58,6,39 5. szint 78,7,33 6. szint 83,4,39 7. szint 89,4,49 11

14 MATEMATIKA MG91 Konyhai mérőedény II. 2/94. FELADAT: konyhai mérőedény II. MG91 A konyhai mérőedényt általában folyadékok űrmértékének a mérésére használják. A következő ábrán egy egyliteres konyhai mérőedény látható. Rajzold be a mérőedény ábrájába, hogy a 375 milliliternyi folyadék szintje hol található! l 1/2 l Konyhai mérőedény II. 1/4 l 1/8 l Rajzold be a mérőedény ábrájába, hogy 375 milliliternyi folyadék szintje hol található! mg91 JAVÍTÓKULCS 1-es kód: A tanuló valamilyen egyértelmű jelöléssel az 1 4 és 1 skálabeosztás közötti rész felezővonalát jelölte meg ± 2 mm eltéréssel. 2 Ha a tanuló egy tartományt jelölt meg, akkor annak teljes egészében a helyes válaszként megadott tartományon belül kell lennie. 1 l 1/2 l 1/4 l 1/8 l -s kód: Rossz válasz. Lásd még: X és 9-es kód. 12

15 1. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Mennyiségek és műveletek Modellalkotás és integráció A feladat leírása: A feladatban a tanulóknak mértékegységátváltást kell elvégezniük (ml - l), majd bejelölni a kapott értéket egy lineáris skálán. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,26,9 Standard nehézség ,6 Nehézségi szint 5 Lehetséges kódok: 1 x ,6,3, -,3 -,6,42 -,24 -, Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 5,1,16 1. szint alatt 4,5,92 8 évf. gimnázium 7,9,79 1. szint 13,3,54 6 évf. gimnázium 65,7,62 2. szint 23,9,37 4 évf. gimnázium 58,3,29 3. szint 38,6,32 Szakközépiskola 49,2,26 4. szint 54,7,32 Szakiskola 33,3,33 5. szint 68,8,35 6. szint 81,3,45 7. szint 89,6,53 13

16 MATEMATIKA Sorozat 3/95. FELADAT: sorozat MG1352 A következő, geometriai alakzatokból álló sorozatokra az jellemző, hogy elemei önhasonlóak, azaz valamely kisebb részüket kinagyítva (és esetleg elforgatva) ugyanolyan alapmotívumokra bukkanhatunk, mint az eredeti alakzatban. A következő sorozatban például a második elemet úgy kapjuk meg, hogy az eredeti szakasz végpontjába szimmetrikusan két szakaszt húzunk, amelyek egymással derékszöget zárnak be, és hosszúságuk összege egyenlő az eredeti szakasz hosszával. A harmadik elemet ezt a gondolatmenetet ismételve kapjuk meg. 1. elem 2. elem 3. elem MG1352 A következő ábrán egy újabb sorozat első két eleme látható. Figyeld meg, hogyan keletkezett az 1. elemből a 2. elem, majd ennek alapján rajzold le a sorozat 3. elemét! Sorozat 1. elem 2. elem 3. elem Figyeld meg, hogyan keletkezett az 1. elemből a 2. elem, majd ennek alapján rajzold le a mg1351 JAVÍTÓKULCS sorozat 3. elemét! 1-es kód: A tanuló az alábbi ábrának megfelelően készítette el rajzát. A vonalaknak az ábrán látható módon kell elhelyezkedniük, és nem tekintjük hibának, ha a vonalak hosszúsága nem megfelelő, ha azok arányaiban megközelítőleg helyesek. -s kód: Rossz válasz. Lásd még: X és 9-es kód. 14

17 1. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Hozzárendelések és összefüggések Komplex megoldások és kommunikáció A feladat leírása: Az ábrán egy geometriai alakzatokból álló sorozat első 3 eleme látható, melyhez le van írva a sorozatképzés szabálya. Egy másik ábrán egy másik sorozat első két eleme alapján kell a tanulóknak kitalálniuk a sorozat szabályát, és lerajzolniuk a 3. elemét. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,35,11 Standard nehézség 187 7,1 Nehézségi szint 6 Lehetséges kódok: 1 x ,6,3, -,3 -,6,47 -,17 -, Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 26,,14 1. szint alatt,4,24 8 évf. gimnázium 51,9,83 1. szint 1,,15 6 évf. gimnázium 49,2,7 2. szint 4,3,15 4 évf. gimnázium 36,1,26 3. szint 11,9,22 Szakközépiskola 22,4,22 4. szint 24,9,27 Szakiskola 8,9,19 5. szint 42,1,36 6. szint 61,5,49 7. szint 82,8,56 15

18 MATEMATIKA MG /96. FELADAT: repülők MG452 Repülők A kötelékben egy lopakodó (radarral nem látható) vadászgép is repül. A lopakodó vadász a vezérgéptől (V) és a két kísérő géptől (K1, K2) is egyenlő távolságra repül. Jelöld meg X-szel a lopakodó helyét a következő ábrán, és nevezd el L-betűvel! ( 8; 8) Észak (; 8) Nyugat V K2 Kelet K1 ( 8; ) Dél (; ) MG Repülők A vezérgép és a két kísérőgép a célterület irányába tart, a három repülőgép egymáshoz viszonyított helyzete változatlan. Melyik TERÜLETEN helyezkedhet el a V vezérgép K1-es kísérője, amikor a vezérgép a célterület fölött van? Satírozd be azt a területet, amely felett a K1-es kísérő tartózkodhat! Célterület ( 8; 8) Észak (; 8) Nyugat V K2 Kelet K1 ( 8; ) Dél (; ) 16

19 1. ÉVFOLYAM A feladathoz tartozó adatok a következő oldalakon találhatók. 17

20 Helyes válasz: A MATEMATIKA Jelöld meg X-szel a lopakodó helyét a következő ábrán, és nevezd el L-betűvel! mg452 JAVÍTÓKULCS 1-es kód: A tanuló helyesen rajzolta be a lopakodó helyét a következő ábrának megfelelően. Természetesen nem tekintjük hibának, ha a tanuló nem nevezte el L-betűvel az általa egyértelműen megjelölt helyet. ( 8; 8) Észak (; 8) Nyugat V K2 Kelet K1 L ( 8; ) Dél (; ) 6-os kód: Tipikusan rossz válasznak tekintjük, ha a tanuló által berajzolt pont csak két géptől van egyenlő távolságra. -s kód: Más rossz válasz. Lásd még: X és 9-es kód. 18

21 1. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Alakzatok síkban és térben Tényismeret és rutinműveletek A feladat leírása: A feladatban egy lineáris számskálájú számegyenesről egy óráról kell leolvasni egy mutatott értéket (a szeg helye a gyertyaórában). A megoldást nehezítette, hogy a számskálán egy fő beosztás 3 órának felelt meg, a kérdéses érték két főbeosztás felezőpontjánál szerepelt. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,28,9 Standard nehézség ,9 Nehézségi szint 5 Lehetséges kódok: 1 6 x ,6,3, -,3 2 -,25 14,42 -,8 -,21 -, Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 45,7,13 1. szint alatt 1,7,52 8 évf. gimnázium 62,8,93 1. szint 6,8,38 6 évf. gimnázium 63,,67 2. szint 17,7,32 4 évf. gimnázium 54,,26 3. szint 35,5,31 Szakközépiskola 45,6,23 4. szint 52,,31 Szakiskola 27,2,33 5. szint 63,9,37 6. szint 73,5,46 7. szint 83,7,47 19

22 MATEMATIKA ( 8; ) Dél (; ) MG /97. FELADAT: repülők MG453 Repülők A vezérgép és a két kísérőgép a célterület irányába tart, a három repülőgép egymáshoz viszonyított helyzete változatlan. Melyik TERÜLETEN helyezkedhet el a V vezérgép K1-es kísérője, amikor a vezérgép a célterület fölött van? Satírozd be azt a területet, amely felett a K1-es kísérő tartózkodhat! Célterület ( 8; 8) Észak (; 8) Nyugat V K2 Kelet K1 ( 8; ) Dél (; ) 2

23 1. ÉVFOLYAM A feladathoz tartozó adatok a következő oldalakon találhatók. 21

24 MATEMATIKA Melyik TERÜLETEN helyezkedhet el a V vezérgép K1-es kísérője, amikor a vezérgép a mg453 JAVÍTÓKULCS célterület fölött van? Satírozd be azt a területet, amely felett a K1-es kísérő tartózkodhat! 2-es kód: A tanuló a következő ábrán megjelölt területet satírozta be. Nem tekintjük hibának, ha a tanuló a másik kisérőgép által elfoglalt területet is megjelölte az ábrán. ( 8; 8) Észak (; 8) Célterület K1 Nyugat V K2 Kelet K1 ( 8; ) Dél (; ) 1-es kód: Részlegesen jó válasznak tekintjük, ha a tanuló nem területet jelölt meg, hanem a 2-es kódnál megadott K1 területen belül adott meg egy pontot vagy csúcspontot. -s kód: Rossz válasz. Lásd még: X és 9-es kód. 22

25 1. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Alakzatok síkban és térben Tényismeret és rutinműveletek A feladat leírása: A koordinátageometriai feladatban párhuzamos eltolást kell végezni. Azt a területet kell megjelölniük a tanulóknak, ahova egy pont kerül, ha egy másikat egy megjelölt négyzetbe tolunk el, és a két pont egymáshoz viszonyított helyzete nem változik. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,19,4 Standard nehézség , 1. lépésnehézség ,8 2. lépésnehézség ,3 Nehézségi szint 5 Lehetséges kódok: 1 2 x ,6,3, -,3 -,6,47,3 -,24 -, Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 42,,14 1. szint alatt 1,2,47 8 évf. gimnázium 64,4,82 1. szint 3,2,28 6 évf. gimnázium 62,1,76 2. szint 1,6,23 4 évf. gimnázium 52,7,26 3. szint 28,2,28 Szakközépiskola 41,5,23 4. szint 48,3,28 Szakiskola 19,3,3 5. szint 63,5,33 6. szint 75,5,43 7. szint 85,5,54 23

26 MATEMATIKA Vonatjegy 6/98 FELADAT: vonatjegy MG761 Andrea Szolnokról Nyíregyházára szeretne eljutni. A Budapest Záhony útvonalon közlekedő vonatra 5%-os kedvezménnyel váltott másodosztályú vonatjegyet. A következő táblázat a vonat főbb megállóhelyeinek távolságát mutatja Budapesttől. Nyíregyháza Budapest Cegléd Szolnok Karcag Kisújszállás Püspökladány Debrecen Záhony 73 km 1 km 11 km 146 km 177 km 222 km 27 km 336 km A következő táblázat a vonatjegyek árát tartalmazza a távolság függvényében. Ha a távolság értéke nem szerepel a táblázatban, akkor azt a legkisebb távolságértéket kell venni a vonatjegy árának számításakor, amely éppen meghaladja az utazás kilométertávolságát. MG Távolság (km) Teljes árú vonatjegy (Ft) Másodosztály Első osztály Vonatjegy Mennyibe került Andreának az 5%-os másodosztályú vonatjegy Szolnoktól Nyíregyházáig? A tarifa meghatározásához használd mindkét táblázatot!

27 1. ÉVFOLYAM A feladathoz tartozó adatok a következő oldalakon találhatók. 25

28 Mi lehetett Máté úticélja, ha Budapestről indult ezen a vonalon? Satírozd be a helyes vá- MATEMATIKA mg761 JAVÍTÓKULCS 2-es kód: 1-es kód: 6-os kód: Mennyibe került Andreának az 5%-os másodosztályú vonatjegy Szolnoktól Nyíregyházáig? A tarifa meghatározásához használd mindkét táblázatot! 127 Ft. A helyes érték látható számítások nélkül is elfogadható. Mértékegység megadása nem szükséges. Számítás: Szolnok Nyíregyháza távolság: 17 km, ezért a 18 km-es árral kell számolni. A 17 km-es jegy ára: 254 Ft, a kedvezmény miatt az ár: 127 Ft Részlegesen jó válasznak tekintjük, ha a tanuló láthatóan a 18 km-es távolsághoz tartozó adatokkal számolt, de a következő két feltétel közül csak az egyiket vette figyelembe, a másikat nem. (1) Másodosztályon való utazás (2) Az 5%-os utazási kedvezmény. Tanulói példaválasz(ok): 159 [A tanuló az elsőosztályú vonatjegy árát határozta meg az 5%-os kedvezménynyel] 254 [A tanuló csak a másodosztályon való utazási feltételt vette figyelembe, az 5%- os kedvezményt nem.] A távolság 17 km, a vonatjegy ára: 254 Ft Részlegesen jó válasznak tekintjük, ha a tanuló láthatóan VAGY a 16 km-es jegyárral VAGY a 16 és 18 km-es jegyár középértékével VAGY a 16 km + 1 km-es jegyárral számolt (18 km-es helyett), ettől eltekintve figyelembe vette mindkét utazási feltételt (a másodosztályon való utazást és az 5%-os kedvezményt is). Tanulói példaválasz(ok): A távolság 17 km, a vonatjegy ára: 229 Ft (16 km-es ár), 5%-os jegy 1145 Ft. 16 km km : 2 = = 2415 [A tanuló középértékkel számolt jegyárat.] = : 2 = 117 [A tanuló a 18 km 1 km-es jegyárral számolt.] 5-ös kód: Részlegesen jó válasznak tekintjük, ha a tanuló helyesen határozta meg a távolságot (17 km), de láthatóan VAGY a 16 km-es jegyárral VAGY a 16 és 18 km-es jegyár középértékével VAGY a 16 km + 1 km-es jegyárral számolt számolt (18 km-es helyett), ÉS az 1-es kódnál megadott két feltétel közül csak az egyiket vette figyelembe, a a másikat nem. Tanulói példaválasz(ok): 17 km 229 [A tanuló láthatóan a 16 km-es úthoz tartozó másodosztályú jegy árával számolt, az 5%-os kedvezmény nélkül.] A jegy ára 287 Ft, de a kedvezmény miatt 1435 Ft. [16 km, elsőosztály, kedvezmény] 18 km 254 Ft, akkor levonunk 1 km-t, azaz 2 Ft-ot, ezért 234 Ft. [A tanuló a 18 km 1 km-es jegyárral számolt, másodosztály, kedvezmény nélkül.] -s kód: Rossz válasz. Tanulói példaválasz(ok): 182 Ft, mert a Budapest Nyíregyháza távolság 27 km és féláron utazik (2. osztályon). Lásd még: X és 9-es kód. Megj.: A 2-es kód két pontot, az 1-es, a 6-os és az 5-ös kód egy pontot ér. 26

29 1. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Hozzárendelések és összefüggések Modellalkotás és integráció A feladat leírása: A nyílt végű feladatban a tanulóknak két táblázat adatait kell felhasználniuk, és szövegesen adott utasítások alapján kikeresni a szükséges adatokat, majd elvégezni velük a megfelelő számításokat. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,16,8 Standard nehézség ,2 1. lépésnehézség 68 15,7 2. lépésnehézség ,1 Nehézségi szint 6 Lehetséges kódok: x ,6,3, -, , ,34,14,2 -,3 -,25 -, Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 37,6,12 1. szint alatt 4,4,62 8 évf. gimnázium 54,7,7 1. szint 8,2,33 6 évf. gimnázium 53,,58 2. szint 16,4,26 4 évf. gimnázium 44,7,22 3. szint 29,2,25 Szakközépiskola 36,5,19 4. szint 4,8,2 Szakiskola 23,2,25 5. szint 5,9,26 6. szint 62,5,38 7. szint 74,4,55 27

30 MATEMATIKA Az 5%-os másodosztályú vonatjegy ára Szolnok Nyíregyháza között: Ft. 7/99. FELADAT: vonatjegy MG762 Vonatjegy MG762 Máté anyukájának volt egy 347 Ft-os előre megváltott vonatjegye, de sajnos elfoglaltsága miatt nem tudott elutazni. Máté beváltotta ezt a vonatjegyet közelgő utazásához egy másodosztályú, oda-vissza útra szóló teljes árú vonatjegyre. A beváltás során nem számoltak -s kód: Rossz válasz. fel kezelési költséget, és még 47 Ft-ot vissza is kapott a két jegy különbözeteként. Tanulói példaválasz(ok): Mi lehetett Máté úticélja, ha Budapestről indult vonattal ezen a vonalon? Satírozd be a 182 Ft, mert a Budapest Nyíregyháza távolság 27 km és féláron utazik (2. osztályon). helyes válasz betűjelét! Lásd még: mg762 X és A9-es Cegléd kód. B Szolnok Megj.: A 2-es kód két pontot, az 1-es, a 6-os és az 5-ös kód egy pontot ér. C Püspökladány D Debrecen Mi lehetett Máté úticélja, ha Budapestről indult ezen a vonalon? Satírozd be a helyes válasz JAVÍTÓKULCS betűjelét! Helyes válasz: B 28

31 1. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Hozzárendelések és összefüggések Modellalkotás és integráció A feladat leírása: AA feleletválasztós feladatban a tanulóknak egy szöveges formában leírt számításos feladat végrehajtása után két táblázat együttes értelmezésével kell kikeresniük a feltételeknek eleget tevő adatokat. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,25,12 Standard nehézség ,2 Nehézségi szint 5 Lehetséges kódok: x ,6,3, -,3 -,6,39 -,2 -,1 -,8 -,16 -, Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 46,3,16 1. szint alatt 13, 1,49 8 évf. gimnázium 65,8,77 1. szint 17,8,59 6 évf. gimnázium 64,4,76 2. szint 23,7,39 4 évf. gimnázium 53,5,28 3. szint 33,1,31 Szakközépiskola 44,,22 4. szint 48,5,34 Szakiskola 33,3,33 5. szint 64,1,38 6. szint 77,5,47 7. szint 88,4,44 29

32 MATEMATIKA Iskolarádió 8/1. FELADAT: iskolarádió ME431 A következő kördiagramon az látható, hogy milyen arányban szerepelnek az iskolarádióban a különböző zenei műfajok. Klasszikus: 15% Pop: 6% Dzsessz: 25% Az iskolarádiósok felmérték, hogy melyik zenei műfajt kedvelik leginkább az iskola tanulói. A rádiósok kérdésére minden tanuló válaszolt. Mindenki egy műfajt jelölhetett meg. A vizsgálat eredményét az alábbi táblázat foglalja össze. Műfaj Lányok szavazatai Fiúk szavazatai Pop Dzsessz 68 4 Klasszikus 34 8 ME A diagram és a táblázat adatai alapján a lányok vagy a fiúk zenei ízlésének felel meg inkább az iskolarádió műsora? Satírozd be a helyes válasz betűjelét! Válaszodat számítással indokold is! L F Indoklás: Lányok Fiúk 3

33 1. ÉVFOLYAM A feladathoz tartozó adatok a következő oldalakon találhatók. 31

34 Iskolarádió MATEMATIKA me431 JAVÍTÓKULCS 1-es kód: 6-os kód: A diagram és a táblázat adatai alapján a lányok vagy a fiúk zenei ízlésének felel meg inkább az iskolarádió műsora? Satírozd be a helyes válasz betűjelét! Válaszodat számítással indokold is! A tanuló a Lányok válaszlehetőséget jelölte meg ÉS indoklása helyes. A tanuló kiszámította a lányok szavazatainak százalékos arányát (57,5%, 28,3%, 14,2%) és ezt megfeleltette a kördiagramon szereplő megfelelő értékeknek. Ha a tanuló a fiúk szavazatainak százalékos arányát is feltüntette, akkor a helyes arányoknak kell szerepelniük a válasz elfogadásához. Számítás: Műfaj Lányok szavazatai Fiúk szavazatai Pop 138 : 24 1 = 57,5% 112 : 16 1 = 7% Dzsessz 68 : 24 1 = 28,3% 4 : 16 1 = 25% Klasszikus 34 : 24 1 = 14,2% 8 : 16 1 = 5% Tanulói példaválasz(ok): Lányok, az arányok miatt, mert a fiúknál elenyésző a klasszikus zene, a diagram pedig 15%-os. 24,6 = 144, tehát a lányokénak. Lányokénak, mert 24,6 = 144, 24,15 = 36, 24,25 = 6 Tipikusan rossz válasznak tekintjük, ha a tanuló a Lányok válaszlehetőséget jelölte meg és indokolásában arra utalt, hogy a felmérésben több lányt kérdeztek meg. Tanulói példaválasz(ok): A lányokénak = 26, 68 4 = 28, 34 8 = 26. Tehát a lányok átlagosan többet hallgatják a rádiót. A lányokénak, mert ők többen szavaztak. A lányokénak, mert 24 > 16 [Nemenként összeadta a táblázat sorait.] Lányokénak, mert = 24, = 16 -s kód: Más rossz válasz. Idetartoznak azok a válaszok is, amikor a tanuló a Lányok válaszlehetőséget jelölte meg és indoklása nem megfelelő, de különbözik a 6-os kódnál leírtakról vagy az indoklás hiányzik. Tanulói példaválasz(ok): Fiúké, mert 24 lány, 16 fiú. 1% = 24, x% = 138 x = 57,5% 1% = 16, x% = 112, x = 7% Lányokénak. A táblázatra ránézve egy pillanat alatt kiderül. Lásd még: X és 9-es kód. 32

35 1. ÉVFOLYAM A kérdés besorolása Tartalmi terület: Gondolkodási művelet: Események statisztikai jellemzői és valószínűsége Komplex megoldások és kommunikáció A feladat leírása: A feladatban egy kördiagram és egy táblázat adatait kell összehasonlítaniuk a tanulóknak, és megállapítaniuk, hogy a táblázat melyik oszlopában szereplő számadatok aránya felel meg a kördiagram cikkei által reprezentált arányoknak. A feladat statisztikai paraméterei Becslés Standard hiba (S. H.) Standard meredekség,4,2 Standard nehézség ,9 Nehézségi szint 7 Lehetséges kódok: 1 6 x ,6,3, -,3 -,6,43 -,2 -,14 -, Százalékos megoldottság Településtípus Tanulói % S. H. képességszintek % S. H. Teljes populáció 11,1,9 1. szint alatt,3,21 8 évf. gimnázium 32,,71 1. szint,2,7 6 évf. gimnázium 29,,58 2. szint,6,6 4 évf. gimnázium 19,,19 3. szint 1,9,9 Szakközépiskola 6,7,12 4. szint 6,4,16 Szakiskola 1,,8 5. szint 17,8,28 6. szint 36,7,54 7. szint 64,9,74 33

1 l. 1/2 l. 1/4 l 1/8 l

1 l. 1/2 l. 1/4 l 1/8 l Mauna Kea. MG228 A Föld egyik legnagyobb hegye a Hawaii-szigeteken található Mauna Kea. A hegy érdekessége, hogy bár teljes magassága 2 méter, ennek csak 42%-a található a vízfelszín felett, a többi része

Részletesebben

10. Javítókulcs M a t e m a t i k a. Országos kompetenciamérés. Tanulói példaválaszokkal bővített változat. é v f o l y a m.

10. Javítókulcs M a t e m a t i k a. Országos kompetenciamérés. Tanulói példaválaszokkal bővített változat. é v f o l y a m. 10. é v f o l y a m Javítókulcs M a t e m a t i k a Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2010 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön az 2009-es Országos kompetenciamérés

Részletesebben

Országos kompetenciamérés 2007 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2007 Feladatok és jellemzőik. matematika 10. évfolyam 2007 Országos kompetenciamérés 2007 Feladatok és jellemzőik matematika 10. évfolyam Oktatási Hivatal Budapest, 2008 10. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 2007 májusában immár ötödik alkalommal került

Részletesebben

Országos kompetenciamérés 2010 Feladatok és jellemzőik. matematika 8. évfolyam

Országos kompetenciamérés 2010 Feladatok és jellemzőik. matematika 8. évfolyam 21 Országos kompetenciamérés 21 Feladatok és jellemzőik matematika 8. évfolyam Oktatási Hivatal Budapest, 211 8. ÉVFOLYAM A kompetenciamérésekről 21 májusában immár nyolcadik alkalommal került sor az

Részletesebben

Országos kompetenciamérés 2006 Feladatok és jellemzőik. matematika 6. évfolyam

Országos kompetenciamérés 2006 Feladatok és jellemzőik. matematika 6. évfolyam Országos kompetenciamérés 2006 Feladatok és jellemzőik matematika 6. évfolyam sulinova Kht. Értékelési Központ Budapest, 2007 6. ÉVFOLYAM A kompetenciamérésekről 2006 tavaszán immár negyedik alkalommal

Részletesebben

Országos kompetenciamérés 2012 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2012 Feladatok és jellemzőik. matematika 10. évfolyam 212 Országos kompetenciamérés 212 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 213 1. ÉVFOLYAM A kompetenciamérésekről 212 májusában immár kilencedik alkalommal került sor

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 212 6. évfolyam MATEMATIKA Országos kompetenciamérés 212 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály Budapest, 213 6. ÉVFOLYAM A kompetenciamérésekről

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 215 6. évfolyam MATEMATIKA Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit Országos kompetenciamérés 215 Feladatok és jellemzőik matematika 6. évfolyam

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 211 6. évfolyam MATEMATIKA Országos kompetenciamérés 211 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály Budapest, 212 6. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 28 6. évfolyam MATEMATIKA Országos kompetenciamérés 28 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Budapest, 29 6. ÉVFOLYAM A kompetenciamérésekről 28 májusában immár hatodik alkalommal

Részletesebben

Országos kompetenciamérés 2008 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2008 Feladatok és jellemzőik. matematika 10. évfolyam 28 Országos kompetenciamérés 28 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 29 1. ÉVFOLYAM A kompetenciamérésekről 28 májusában immár hatodik alkalommal került sor az Országos

Részletesebben

A ÉVI KOMPETENCIAMÉRÉS FIT- JELENTÉSEINEK ÚJ ELEMEI

A ÉVI KOMPETENCIAMÉRÉS FIT- JELENTÉSEINEK ÚJ ELEMEI A 2010. ÉVI KOMPETENCIAMÉRÉS FIT- JELENTÉSEINEK ÚJ ELEMEI Balázsi Ildikó ÚJDONSÁGOK A FIT-JELENTÉSEKBEN Új, évfolyamfüggetlen skálák matematikából és szövegértésbıl egyaránt Új ábrák: a két év alatti fejlıdés

Részletesebben

Országos kompetenciamérés 2009 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2009 Feladatok és jellemzőik. matematika 10. évfolyam 29 Országos kompetenciamérés 29 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 21 1. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 29 májusában immár hatodik alkalommal került sor az Országos

Részletesebben

Országos kompetenciamérés 2013 Feladatok és jellemzőik. matematika 10. évfolyam

Országos kompetenciamérés 2013 Feladatok és jellemzőik. matematika 10. évfolyam 213 Országos kompetenciamérés 213 Feladatok és jellemzőik matematika 1. évfolyam Oktatási Hivatal Budapest, 214 1. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 213 májusában immár tizedik alkalommal került sor az

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 213 6. évfolyam MATEMATIKA Országos kompetenciamérés 213 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Köznevelési Mérési Értékelési Osztály Budapest, 214 6. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL

Részletesebben

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján

Az Országos kompetenciamérés (OKM) tartalmi kerete. a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az Országos kompetenciamérés (OKM) tartalmi kerete a 20/2012. (VIII. 31.) EMMI rendelet 3. melléklete alapján Az OKM tartalmi keret Célja: definiálja azokat a tényezőket és szempontrendszereket, amelyek

Részletesebben

Az Országos kompetenciamérés

Az Országos kompetenciamérés Az Országos kompetenciamérés Az OKM 2006 FIT-jelentés szoftver Balázsi Ildikó Értékelési Központ Visszajelzés Visszajelzés az iskoláknak és fenntartóiknak saját eredményeikről és az országos eredményekről

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 29 6. évfolyam MATEMATIKA Országos kompetenciamérés 29 Feladatok és jellemzőik matematika 6. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály Budapest, 21 6. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL

Részletesebben

6. évfolyam MATEMATIKA

6. évfolyam MATEMATIKA 214 6. évfolyam MATEMATIKA Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit Országos kompetenciamérés 214 Feladatok és jellemzőik matematika 6. évfolyam

Részletesebben

Országos kompetenciamérés 2012 Matematikai eszköztudás

Országos kompetenciamérés 2012 Matematikai eszköztudás Országos kompetenciamérés 2012 Matematikai eszköztudás Eszköztudás a tananyag megértésének, feldolgozásának képessége tantárgyak feletti vagy közötti tudás, amely lényegében minden tantárgy tanításánál

Részletesebben

1/8. Iskolai jelentés. 10.évfolyam matematika

1/8. Iskolai jelentés. 10.évfolyam matematika 1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,

Részletesebben

Országos kompetenciamérés 2009 Feladatok és jellemzőik. matematika 8. évfolyam

Országos kompetenciamérés 2009 Feladatok és jellemzőik. matematika 8. évfolyam 29 Országos kompetenciamérés 29 Feladatok és jellemzőik matematika 8. évfolyam Oktatási Hivatal Budapest, 21 8. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 29 májusában immár hatodik alkalommal került sor az Országos

Részletesebben

Minimum követelmények matematika tantárgyból 11. évfolyamon

Minimum követelmények matematika tantárgyból 11. évfolyamon Minimum követelmények matematika tantárgyból. évfolyamon A hatványozás általánosítása pozitív alap esetén racionális kitevőre. Műveletek hatványokkal. A, a 0 függvény. Az eponenciális függvény. Vizsgálata

Részletesebben

Az OKM jelentések felhasználási lehetőségei az intézményi adatok elemzésében. A FIT elemzőszoftver által kínált lehetőségek

Az OKM jelentések felhasználási lehetőségei az intézményi adatok elemzésében. A FIT elemzőszoftver által kínált lehetőségek Az OKM jelentések felhasználási lehetőségei az intézményi adatok elemzésében A FIT elemzőszoftver által kínált lehetőségek A kompetenciamérés eredményeire alapuló fejlesztés egy lehetséges módja Képességpontok

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: 8 évfolyamos gimnázium

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: 8 évfolyamos gimnázium FIT-jelentés :: 2012 8. évfolyam :: 8 évfolyamos gimnázium Gárdonyi Géza Ciszterci Gimnázium, Szakközépiskola és Kollégium 3300 Eger, Csiky Sándor u. 1. Létszámadatok A telephely létszámadatai a 8 évfolyamos

Részletesebben

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén

Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén Kilencedikes kompetencia alapú bemeneti mérés matematikából 2008 őszén Póta Mária 2009. 0 1 i e π 1 A matematikai eszköztudás kompetencia alapú mérése Méréssorozat első fázisa, melynek a hozzáadott értéket

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FIT-jelentés :: Újbudai Széchenyi István Gimnázium 1118 Budapest, Rimaszombati út 2-4. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Újbudai Széchenyi István Gimnázium 1118 Budapest, Rimaszombati út 2-4. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2015 10. évfolyam :: 4 évfolyamos gimnázium Újbudai Széchenyi István Gimnázium 1118 Budapest, Rimaszombati út 2-4. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: 2012 Telephelyi jelentés 8. évfolyam :: 8 évfolyamos gimnázium Ciszterci Szent István Gimnázium

FIT-jelentés :: 2012 Telephelyi jelentés 8. évfolyam :: 8 évfolyamos gimnázium Ciszterci Szent István Gimnázium FIT-jelentés :: 2012 8. évfolyam :: 8 évfolyamos gimnázium Ciszterci Szent István Gimnázium 8000 Székesfehérvár, Jókai u. 20. Létszámadatok A telephely létszámadatai a 8 évfolyamos gimnáziumi képzéstípusban

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

Javítókulcs M a t e m a t i k a

Javítókulcs M a t e m a t i k a 8. é v f o l y a m Javítókulcs M a t e m a t i k a Országos kompetenciamérés 2010 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön az 2010-es Országos kompetenciamérés matematikafeladatainak Javítókulcsát tartja

Részletesebben

Országos kompetenciamérés 2011 Feladatok és jellemzőik. matematika 8. évfolyam

Országos kompetenciamérés 2011 Feladatok és jellemzőik. matematika 8. évfolyam 2011 Országos kompetenciamérés 2011 Feladatok és jellemzőik matematika 8. évfolyam Oktatási Hivatal Budapest, 2012 8. ÉVFOLYAM A KOMPETENCIAMÉRÉSEKRŐL 2011 májusában immár kilencedik alkalommal került

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2015 8. évfolyam :: Általános iskola Baár-Madas Református Gimnázium, Általános Iskola és Kollégium 1022 Budapest, Lorántffy Zsuzsanna utca 3. Létszámadatok A telephely létszámadatai az

Részletesebben

Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit

Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit 2014 Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit Országos kompetenciamérés 2014 Feladatok és jellemzőik matematika 8. évfolyam Oktatási Hivatal

Részletesebben

Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés

Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Karcag, 2011. április 4. Horváthné Pandur Tünde munkaközösség vezető Kiskulcsosi

Részletesebben

FIT-jelentés :: Dobó István Gimnázium 3300 Eger, Széchenyi u. 19. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Dobó István Gimnázium 3300 Eger, Széchenyi u. 19. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 10. évfolyam :: 6 évfolyamos gimnázium Dobó István Gimnázium 3300 Eger, Széchenyi u. 19. Létszámadatok A telephely létszámadatai a 6 évfolyamos gimnáziumi képzéstípusban a 10. évfolyamon

Részletesebben

Átlageredmények a 2011. évi Országos Kompetenciamérésen. matematikából és szövegértésből

Átlageredmények a 2011. évi Országos Kompetenciamérésen. matematikából és szövegértésből Átlageredmények a 2011. évi Országos Kompetenciamérésen Általános iskola 8. osztály matematikából és szövegértésből Matematika Szövegértés Iskolánkban Ált. iskolákban Budapesti ált. iskolákban Iskolánkban

Részletesebben

Javítókulcs M a t e m a t i k a

Javítókulcs M a t e m a t i k a 8. é v f o l y a m Javítókulcs M a t e m a t i k a Tanulói példaválaszokkal bővített változat Országos kompetenciamérés 2010 Oktatási Hivatal ÁLTALÁNOS TUDNIVALÓK Ön az 2009-es Országos kompetenciamérés

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FIT-jelentés :: Egri Dobó István Gimnázium 3300 Eger, Széchenyi István utca 19. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Egri Dobó István Gimnázium 3300 Eger, Széchenyi István utca 19. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2014 10. évfolyam :: 4 évfolyamos gimnázium Egri Dobó István Gimnázium 3300 Eger, Széchenyi István utca 19. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

FIT-jelentés :: Eötvös József Főiskola Gyakorló Általános Iskolája 6500 Baja, Bezerédj utca 15. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Eötvös József Főiskola Gyakorló Általános Iskolája 6500 Baja, Bezerédj utca 15. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2014 8. évfolyam :: Általános iskola Eötvös József Főiskola Gyakorló Általános Iskolája 6500 Baja, Bezerédj utca 15. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban

Részletesebben

FIT-jelentés :: Andrássy Gyula Gimnázium és Kollégium 5600 Békéscsaba, Andrássy út 56. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Andrássy Gyula Gimnázium és Kollégium 5600 Békéscsaba, Andrássy út 56. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2012 10. évfolyam :: 4 évfolyamos gimnázium Andrássy Gyula Gimnázium és Kollégium 5600 Békéscsaba, Andrássy út 56. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

Változások az Országos kompetenciamérés skáláiban

Változások az Országos kompetenciamérés skáláiban Változások az Országos kompetenciamérés skáláiban A skála módosításának okai A kompetenciamérések bevezetésénél is megfogalmazott, ám akkor adatvédelmi szempontok miatt nem megvalósítható igény volt, hogy

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: 4 évfolyamos gimnázium

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: 4 évfolyamos gimnázium FIT-jelentés :: 2014 10. évfolyam :: 4 évfolyamos gimnázium Tiszavasvári Középiskola, Szakiskola és Kollégium Váci Mihály Gimnáziumi Tagintézménye 4440 Tiszavasvári, Hétvezér utca 19. Létszámadatok A telephely

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: 8 évfolyamos gimnázium

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: 8 évfolyamos gimnázium FIT-jelentés :: 2012 10. évfolyam :: 8 évfolyamos gimnázium Gárdonyi Géza Ciszterci Gimnázium, Szakközépiskola és Kollégium 3300 Eger, Csiky Sándor u. 1. Létszámadatok A telephely létszámadatai a 8 évfolyamos

Részletesebben

A sokorópátkai Általános Iskola évi Országos Kompetenciamérési eredményeit feldolgozó elemzés

A sokorópátkai Általános Iskola évi Országos Kompetenciamérési eredményeit feldolgozó elemzés A sokorópátkai Általános Iskola 2011. évi Országos Kompetenciamérési eredményeit feldolgozó elemzés 6. osztály A 2011. májusában lebonyolított országos mérésen az iskola minden hatodikos tanulója részt

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint ÉRETTSÉGI VIZSGA 2005. november 5. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint, jól követhetően

Részletesebben

FIT-jelentés :: Eötvös József Gimnázium és Kollégium 2890 Tata, Tanoda tér 5. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Eötvös József Gimnázium és Kollégium 2890 Tata, Tanoda tér 5. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2014 10. évfolyam :: 4 évfolyamos gimnázium Eötvös József Gimnázium és Kollégium 2890 Tata, Tanoda tér 5. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit

Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit 2015 Szerzők Lak Ágnes Rozina, Palincsár Ildikó, Szabó Lívia Dóra, Szepesi Ildikó, Szipőcsné Krolopp Judit Országos kompetenciamérés 2015 Feladatok és jellemzőik matematika 8. évfolyam Oktatási Hivatal

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakiskola

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2012 10. évfolyam :: Szakiskola Pesti Barnabás Élelmiszeripari Szakképző Iskola és Gimnázium Almádi u. 3-5. Telephelye 1148 Budapest, Almádi u. 3-5. Létszámadatok A telephely létszámadatai

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2014 8. évfolyam :: Általános iskola Városközponti Általános Iskola Jókai Mór Általános Iskolája 7622 Pécs, Jókai Mór utca 49. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

A ÉVI KOMPETENCIAMÉRÉS FIT-JELENTÉSEINEK ÚJ ELEMEI ÚJDONSÁGOK A FIT-JELENTÉSEKBEN ÚJ SKÁLA

A ÉVI KOMPETENCIAMÉRÉS FIT-JELENTÉSEINEK ÚJ ELEMEI ÚJDONSÁGOK A FIT-JELENTÉSEKBEN ÚJ SKÁLA A 2010. ÉVI KOMPETENCIAMÉRÉS FIT-JELENTÉSEINEK ÚJ ELEMEI Balázsi Ildikó TL. ÚJDONSÁGOK A FIT-JELENTÉSEKBEN Évfolyam független skálák matematikából és szövegértésbıl Új ábrák a két év alatti fejlıdés bemutatása

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2014 8. évfolyam :: Általános iskola Egri Balassi Bálint Általános Iskola és Előkészítő Szakiskola 3300 Eger, Malomárok utca 1. Létszámadatok A telephely létszámadatai az általános iskolai

Részletesebben

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: 035252 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 10. évfolyam :: 4 évfolyamos gimnázium Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10.

Részletesebben

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2010. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2010 10. évfolyam :: Szakközépiskola Szegedi Ipari, Szolgáltató Szakképző és Általános Iskola Déri Miksa Tagintézménye 6724 Szeged, Kálvária tér 7. Figyelem! A 2010. évi Országos kompetenciaméréstől

Részletesebben

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.

Részletesebben

FIT-jelentés :: Szent István Közgazdasági Szakközépiskola és Kollégium 1095 Budapest, Mester u OM azonosító: Telephely kódja: 001

FIT-jelentés :: Szent István Közgazdasági Szakközépiskola és Kollégium 1095 Budapest, Mester u OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2013 10. évfolyam :: Szakközépiskola Szent István Közgazdasági Szakközépiskola és Kollégium 1095 Budapest, Mester u. 56-58. Létszámadatok A telephely létszámadatai a szakközépiskolai képzéstípusban

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2013 10. évfolyam :: Szakközépiskola Kardos István Általános Iskola és Közgazdasági Szakközépiskola 2310 Szigetszentmiklós, Tököli u. 30/a Létszámadatok A telephely létszámadatai a szakközépiskolai

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5

Részletesebben

FIT-jelentés :: Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 OM azonosító: Telephely kódja: 003. Telephelyi jelentés

FIT-jelentés :: Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 OM azonosító: Telephely kódja: 003. Telephelyi jelentés FIT-jelentés :: 2012 8. évfolyam :: Általános iskola Képes Géza Általános Iskola 4700 Mátészalka, Szokolay Örs u. 2-4 Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Iskolai jelentés. 10. évfolyam szövegértés

Iskolai jelentés. 10. évfolyam szövegértés 2008 Iskolai jelentés 10. évfolyam szövegértés Az elmúlt évhez hasonlóan 2008-ban iskolánk is részt vett az országos kompetenciamérésben, diákjaink matematika és szövegértés teszteket, illetve egy tanulói

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2014 8. évfolyam :: Általános iskola Dunabogdányi Általános Iskola és Alapfokú Művészeti Iskola 2023 Dunabogdány, Hegyalja utca 9-11. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2014 10. évfolyam :: Szakközépiskola Fáy András Közlekedésgépészeti, Műszaki Szakközépiskola 1095 Budapest, Mester utca 60-62. Létszámadatok A telephely létszámadatai a szakközépiskolai

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Szent Imre Római Katolikus Általános Iskola és Kisboldogasszony Óvoda 3532 Miskolc, Fadrusz János u. 3-8. Létszámadatok A telephely létszámadatai az

Részletesebben

FIT-jelentés :: 2011. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 8. évfolyam :: 6 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 6 évfolyamos gimnáziumi képzéstípusban a 8. évfolyamon

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: 4 évfolyamos gimnázium

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: 4 évfolyamos gimnázium FIT-jelentés :: 2010 10. évfolyam :: 4 évfolyamos gimnázium Fazekas Mihály Fővárosi Gyakorló Általános Iskola és Gimnázium 1082 Budapest, Horváth Mihály tér 8. Figyelem! A 2010. évi Országos kompetenciaméréstől

Részletesebben

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2010. Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. OM azonosító: 037320 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2010 8. évfolyam :: Általános iskola Gárdonyi Géza Általános Iskola 2030 Érd, Gárdonyi Géza u. 1/b. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a

Részletesebben

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.

Részletesebben

FIT-jelentés :: Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 10. évfolyam :: 4 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10. évfolyamon

Részletesebben

Matematika. J a v í t ó k u l c s. 8. évfolyam. Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10.

Matematika. J a v í t ó k u l c s. 8. évfolyam. Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10. Matematika J a v í t ó k u l c s 8. évfolyam Oktatási Hivatal Közoktatási Mérési Értékelési Osztály 1054 Budapest, Báthory utca 10. IEA, 2011 1/1. feladat 1/2. feladat : B : B Item: M032757 Item: M032721

Részletesebben

FIT-jelentés :: 2012. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2012. Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. OM azonosító: 029264 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2012 10. évfolyam :: 4 évfolyamos gimnázium Avasi Gimnázium 3524 Miskolc, Klapka Gy. u. 2. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban a 10. évfolyamon

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Babits Mihály Gimnázium és Karithy Frigyes Magyar-Angol Két Tanítási Nyelvű Általános Iskola 1048 Budapest, Hajló utca 2-8 Létszámadatok A telephely

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2011 8. évfolyam :: Általános iskola Vénkerti Általános Iskola, Óvoda és Alapfokú Művészetoktatási Intézmény 4027 Debrecen, Sinay M. u. 6. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2013. Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. OM azonosító: 036611 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Derkovits Gyula Általános Iskola 9700 Szombathely, Bem J u. 7. Létszámadatok A telephely létszámadatai az általános iskolai képzéstípusban a 8. évfolyamon

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001

FIT-jelentés :: 2012. Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a OM azonosító: 027445 Telephely kódja: 001 FIT-jelentés :: 2012 10. évfolyam :: Szakiskola Montenuovo Nándor Szakközépiskola, Szakiskola és Kollégium 7754 Bóly, Rákóczi u. 2/a Létszámadatok A telephely létszámadatai a szakiskolai képzéstípusban

Részletesebben

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola

FIT-jelentés :: 2013. Telephelyi jelentés. 8. évfolyam :: Általános iskola FIT-jelentés :: 2013 8. évfolyam :: Általános iskola Bulgárföldi Általános és Magyar - Angol Két Tanítási Nyelvű Iskola 3534 Miskolc, Fazola H u. 2. Létszámadatok A telephely létszámadatai az általános

Részletesebben

FIT-jelentés :: Ajkai Bródy Imre Gimnázium és Alapfokú Művészeti Iskola 8400 Ajka, Bródy Imre utca 4. OM azonosító: Telephely kódja: 001

FIT-jelentés :: Ajkai Bródy Imre Gimnázium és Alapfokú Művészeti Iskola 8400 Ajka, Bródy Imre utca 4. OM azonosító: Telephely kódja: 001 FIT-jelentés :: 2014 10. évfolyam :: 6 évfolyamos gimnázium Ajkai Bródy Imre Gimnázium és Alapfokú Művészeti Iskola 8400 Ajka, Bródy Imre utca 4. Létszámadatok A telephely létszámadatai a 6 évfolyamos

Részletesebben

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz

NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre

Részletesebben

FIT-jelentés :: Budapest XX. Kerületi Német Nemzetiségi Gimnázium és Kollégium 1203 Budapest, Serény utca 1. OM azonosító:

FIT-jelentés :: Budapest XX. Kerületi Német Nemzetiségi Gimnázium és Kollégium 1203 Budapest, Serény utca 1. OM azonosító: FIT-jelentés :: 2014 Összefoglalás Budapest XX. Kerületi Német Nemzetiségi Gimnázium és Kollégium 1203 Budapest, Serény utca 1. Összefoglalás Az intézmény létszámadatai Tanulók száma Évfolyam Képzési forma

Részletesebben

Intézményi jelentés. 10. évfolyam. Árpád Szakképző Iskola és Kollégium 8000 Székesfehérvár, Seregélyesi út OM azonosító:

Intézményi jelentés. 10. évfolyam. Árpád Szakképző Iskola és Kollégium 8000 Székesfehérvár, Seregélyesi út OM azonosító: FIT-jelentés :: 2010 Árpád Szakképző Iskola és Kollégium 8000 Székesfehérvár, Seregélyesi út 88-90. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén

Részletesebben

É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T

É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS. példaválaszokkal MATEMATIKA. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 6. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós

Részletesebben

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM

Azonosító jel: ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM ÉRETTSÉGI VIZSGA 2005. május 10. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő

Részletesebben

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés

FIT-jelentés :: 2011. Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. OM azonosító: 035253 Telephely kódja: 001. Telephelyi jelentés FIT-jelentés :: 2011 10. évfolyam :: 4 évfolyamos gimnázium Kispesti Deák Ferenc Gimnázium 1192 Budapest, Gutenberg krt. 6. Létszámadatok A telephely létszámadatai a 4 évfolyamos gimnáziumi képzéstípusban

Részletesebben

Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra

Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra 214 Szerzők Balkányi Péter, Lak Ágnes Rozina, Gyapay Judit, Rábainé Szabó Annamária, Szabó Lívia Dóra Országos kompetenciamérés 214 Feladatok és jellemzőik szövegértés 8. évfolyam Oktatási Hivatal Budapest,

Részletesebben

Gyöngyössolymosi Nagy Gyula Katolikus Általános Iskola és AMI

Gyöngyössolymosi Nagy Gyula Katolikus Általános Iskola és AMI 2015. évi OKM Gyöngyössolymosi Nagy Gyula Katolikus Általános Iskola és AMI Intézményi összefoglaló jelentés 2015. évi Országos Kompetenciamérés eredményeiről Gyöngyössolymos, 2016. április 2015. évi OKM

Részletesebben

Telephelyi jelentés. 10. évfolyam :: Szakiskola

Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2011 10. évfolyam :: Szakiskola Herman Ottó Kertészeti-, Környezetvédelmi-, Vadgazdálkodási Szakképző Iskola és Kollégium 9700 Szombathely, Ernuszt K. u. 1. Létszámadatok A telephely létszámadatai

Részletesebben

FIT-jelentés :: 2014. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola

FIT-jelentés :: 2014. Telephelyi jelentés. 10. évfolyam :: Szakközépiskola FIT-jelentés :: 2014 10. évfolyam :: Szakközépiskola Puskás Tivadar Távközlési Technikum Infokommunikációs Szakközépiskola 1097 Budapest, Gyáli út 22. Létszámadatok A telephely létszámadatai a szakközépiskolai

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: 4 évfolyamos gimnázium

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: 4 évfolyamos gimnázium FIT-jelentés :: 2015 10. évfolyam :: 4 évfolyamos gimnázium Székesfehérvári Kodály Zoltán Általános Iskola, Gimnázium és Alapfokú Művészeti Iskola 8000 Székesfehérvár, Béke tér 4. Létszámadatok A telephely

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakiskola

FIT-jelentés :: Telephelyi jelentés. 10. évfolyam :: Szakiskola FIT-jelentés :: 2013 10. évfolyam :: Szakiskola Száraznád Nevelési-Oktatási Központ, Általános Iskola, Szakiskola, Speciális Szakiskola, Pedagógiai Szakszolgálat és Gyógypedagógiai Szakmai Szolgáltató

Részletesebben