Tartalomjegyzék. 2. Probléma megfogalmazása Informatikai módszer Alkalmazás bemutatása Eredmények További célok...

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Tartalomjegyzék. 2. Probléma megfogalmazása...8. 3. Informatikai módszer...8 3.1. Alkalmazás bemutatása...8. 4. Eredmények...12. 5. További célok..."

Átírás

1 Tartalomjegyzék 1. Bevezető A Fiboacci számok és az araymetszési álladó Biet-formula Az araymetszési álladó a geometriába...5. Probléma megfogalmazása Iformatikai módszer Alkalmazás bemutatása Eredméyek További célok Irodalomjegyzék

2 1. Bevezető 1.1. A Fiboacci számok és az araymetszési álladó Fiboacci, hivatalos evé Leoardo Pisao (1. ábra), a Liber Abaci című köyvébe egy olya feladatot vetett fel, amelyek megoldása egy rekurzív számsorozat. Ezt a sorozatot Fiboacci-sorozatak evezzük és mide eleme az első kettő kivételével egyelő az előző két elem összegével. A sorozat gyakra megjeleik a tudomáy külöböző területei, mit a geometria, biológia, művészet és építészet [1]. Például, azt, hogy egy övéy esetébe a száro felfelé haladva háy csavarulat meté háy levelet éritve jutuk el egy olyahoz, amely egy alsóbb levéllel függőleges iráyba fedőhelyzetbe va, a Fiboacci-sorozat mutatja meg [5]. A madulafa ágá 1. ábra: Fiboacci valamelyik levélből kiidulva és az ág vége felé haladva, egyetle levelet sem kihagyva, éppe ötször kell megkerüli az ágat, míg olya levélhez érkezük, amely a kiidulási levéllel azoos állású, és közbe éppe 13 levelet számlálhatuk meg. A körtefa ágai három-meetes e csavar és eközbe 8 levél helyezkedik el. Az égerfa ágai kétmeetes a csavar és közbe 5 levél található. A számok éppe a Fiboacci-sorozat olya elempárjai, amelyek második szomszédok. Említésre méltó a apraforgó táyérjá spirális alakba elhelyezkedő magok száma is. Az egyes spirálok pozitív, mások egatív forgásiráyba helyezkedek el a apraforgó táyérjába, és ha összeszámláljuk az egyes spirális karoko levő szemeket, a apraforgó táyérjáak agyságától függőe, újra csak Fiboacci-számokkal találkozuk: 1 és 34, 34 és 55 vagy 55 és 89 [6]. A matematikusok agyo sok érdekes összefüggést fedeztek fel a számsorozatot taulmáyozva.

3 1.1. Értelmezés. A Fiboacci-sorozat a következő képpe értelmezhető: F 0 =0, F 1 =1, F =F 1 F 1. A Fiboacci-sorozat éháy tagja: 0, 1, 1,, 3, 5, 8, 13, 1, 34, 55, 89, 144, 33, 377, 610, Fiboacci, a Liber Abaci című köyvébe, a következő feladattal vezette be a Fiboacciszámokat: Egy mező él egy pár kisyúl. Ha a kisyulak egy hóap múlva válak felőtté, és mide felőtt yúlpárak havota születik egy pár kisyula, akkor háy yúl lesz a mező hóap múlva? Megoldás. Az első hóap végé csak egy pár yúl va. Két hóap múlva két pár yúl lesz, az egyik ezek közül újszülött. A harmadik hóap végé az eredeti párak megszületik a második pár kisyula, így most már három pár va a mező (. ábra). A egyedik hóap végé a legidősebb párak újabb kicsiyei leszek, és a második hóapba született yúlpárak is megszületek az első kisyulai,. ábra: Fiboacci yulai így összese már 5 pár yuszi va. Így folytatva a godolatsort, megfigyelhető, hogy a megoldást éppe a Fiboacci-sorozat -edik tagja adja meg. Hóap Nyúlak száma F A Fiboacci-sorozat szoros kapcsolatba va az araymetszéssel. Az araymetszési álladó potosa megegyezik a sorozat egymást követő elemei háyadosáak a határértékével. Ezt az álladót a görög phi betűvel jelöljük és értéke = 1 5 =1,

4 1.. Biet-formula Jacques Philippe Marie Biet ( ) fracia matematikus volt, aki jeletős eredméyeket ért el a számelméletbe Az ő evéhez fűződik a Biet-formula, amely egy explicit előállítása a Fiboacci-számokak az araymetszés segítségével Tétel. N természetes számra F = 5[ ]. Ez a formula a Fiboacci-sorozat zárt alakja és Biet-formuláak evezzük. Bizoyítás. Adott a Fiboacci-sorozat: F =F 1 F, F 0 =0, F 1 =1. Határozzuk meg a sorozat r r 0 alakú megoldásait. Legye F =r, F 1 =r 1,,F =r, r 0. Ekkor, behelyettesítve az egyeletbe, a következőt kapjuk: r -el egyszerűsítve az r r 1=0 karakterisztikus egyeletet kapjuk, amelyek a megoldásai: r r 1 r =0. Az r 1 = 1 5 r 1 = 1 5 és r = 1 5 egyeletek, vagyis: F = Ar 1 B r., r = 1 5. megoldások lieáris kombiációja is megoldása az A kezdeti feltételekből F 0 =0, F 1 =1 meghatározhatjuk A-t és B-t: A B=0 A 1 5 B 1 5 =1 A= 5 5 B= 5 5 4

5 Ebből következik a Biet-formula: F = = 5[ ]. 1.. Tétel. Igazolható, hogy lim F 1 F = 1 5 =, ami potosa az araymetszési álladó. Bizoyítás: lim F 1 = lim F 1 5 [ [ ] ] = 1 0 = Következméy. A Biet-formulából következik, hogy az F elég agy természetes szám eseté közel va a 5 irracioális számhoz. Példa: F 10 =55 eseté Az araymetszési álladó a geometriába Az araymetszések ige agy jeletősége va a geometriába. Euklédeszi úto megszerkeszthetjük az araymetszés aráyát. Az érték megjeleik az egyelőszárú háromszög és a szabályos ötszög szerkesztéséél, és a Fiboacci-spirállal is kapcsolatos. Geometriába araymetszések evezzük egy meyiség (pl. egy szakasz) két olya részre botását, melyek közül a kisebbik úgy aráylik a agyobbhoz, mit a agyobbik az egészhez. 5

6 3. ábra: Araymetszés aráya Vegyük egy egységyi hosszúságú AB szakaszt és jelöljük P-vel az araymetszés szeriti osztópotot, x-szel pedig a rövidebb szakasz hosszát (3. ábra). Ekkor felírhatjuk: ahoa x 1 x = 1 x 1 1 x =x, azaz x 3 x 1=0., A gyökök: x 1, = 3± 5. De x 1, tehát: x= 3 5. Ie az araymetszés aráyszáma: 1 x 1 =1 x=1 3 5 = 5 1. Ez az aráyszám potosa megegyezik a Fiboacci-sorozat szomszédos elemei háyadosáak határértékével. Most vizsgáljuk meg, hogya lehet megszerkesztei euklédeszi úto az araymetszés aráyát. A 4. ábrá látható AB=a hosszúságú szakaszak azt a belső C potját szereték megszerkesztei, amely a szakaszt az araymetszés szerit osztja két részre. 4. ábra: Araymetszés szerkesztése 6

7 Első lépéskét vegyük fel egy, az A poto átmeő, az AB egyeesre merőleges egyeest, és mérjük fel erre az A potból kiidulva OA= a távolságot. Eek O végpotja, mit középpot körül rajzoljuk egy a sugarú kört. E körek az A pothoz tartozó éritője az AB egyees. Rajzoljuk meg az OB egyeest. Eek a körrel való metszéspotjai E és F. Az A potot az E és F potokkal összekötve a BAE és BAF háromszögeket kapjuk. A két háromszög hasoló, mivel a B csúcsál levő szög közös, továbbá BAE =BFA (kerületi szögek). Jelöljük a BE szakasz hosszát x-szel és rajzoljuk meg a B középpotú, x sugarú kört. Az AB szakasz és a kör metszéspotját jelöljük C-vel. A BF szakaszra érvéyes a következő összefüggés: BF=x a =x a. Felírhatjuk a következő aráypárt: x a = a x a, ahoa a = x a x, vagy másképpe a x x = x a. A kapott egyelőség éppe azt fejezi ki, hogy az AB szakaszak a C pot az araymetszés szeriti osztópotja, úgy, hogy AC az araymetszés szeriti kisebbik, BC pedig a agyobbik szakasz. 7

8 . Probléma megfogalmazása Egy olya alkalmazás, amely magába foglalja az említett geometriai szerkesztéseket yereség lee azok számára, akiket érdekel a Fiboacci-sorozat és a rejtélyes araymetszési álladó. Ebből az ötletből kiidulva sikerült elkészítei egy olya Flash-alkalmazást, amely rövide ismerteti a felhaszálóval Fiboacci életét és mukásságát, továbbá meglehet tekitei a Fiboacci-számok bevezető feladatát. Az alkalmazás egyik legértékesebb része az araymetszés aráyáak megszerkesztése és a Fiboacci-spirál létrehozása. Ezek látváyos, diamikus módo törtéek, lépésről-lépésre követhetőe. A cél egy miél több geometriai szerkesztést tartalmazó oktatóprogram, amelyet sikerrel lehesse haszáli a taításba. 3. Iformatikai módszer Az Adobe Flash multimédia techológiák halmaza. Az Adobe Systems termékcsaládba tartozik és egyre többe haszálják az alkalmazást weboldalak fejlesztésére. A Flash alkalmas aimáció és iteraktív adatok beszúrására, ezáltal érdekessé és látváyossá téve a weboldalakat, illetve újabb fejlesztések segítségével programokat is lehet bee íri. A grafikák, az aimáció, a hag és az iteraktivitás segítségével a Flash képes oktati, szórakoztati és általáos iformációkkal elláti beüket. Az Adobe Flash CS3 verziót haszálva, amit 007-be adtak ki, elkészült egy olya alkalmazás, amely a Fiboacci-számokat és az araymetszési álladót mutatja be a felhaszálóak. Az alkalmazás tartalmaz geometriai szerkesztéseket is, amelyek rámutatak az araymetszés jeletőségére és érdekességére. Az alkalmazás felépítése lehetővé teszi, hogy a felhaszáló gombyomással iráyítsa a szerkesztések folyamatát, ez a tulajdoság köyebbe követhetővé és átláthatóvá teszi a programot Alkalmazás bemutatása Az alkalmazást elidítva, a bevezető oldalo látható Fiboacci arcképe és, aimációt haszálva, 8

9 folyamatosa megjeleik az olasz matematikus életéről és mukásságáról szóló rövid ismertető szöveg (5. ábra). 5. ábra: Első oldal A Fiboacci evű oldalt követőe, a felhaszáló megtekitheti a Fiboacci yulairól szóló bevezető feladatot. A Bevezető feladat című oldal tartalmazza a feladat szövegét, megoldását és egy aimált ábrát is (6. ábra). A Tovább gombra kattitva, az ábra agyobb méretbe is megtekithető és köye követhető rajta a párhuzam a yulak szaporodása és a Fiboacci-sorozat elemei között. 6. ábra: Második oldal 9

10 Ezek utá következik az araymetszési álladó bemutatása. Az araymetszés aráyai felfedezhetők az ókori építészetbe, reeszász művészeti alkotásokba, zeeművekbe, festméyekbe, sőt, még a természetbe is előfordulak egyes csigafajták görbületeiek egymáshoz való viszoyába, bizoyos fák, övéyek leveleiek méreteibe, egyes virágfajták sziromleveleiek számába [6]. Ugyaakkor tudjuk, hogy az érték szoros kapcsolatba áll a Fiboacci-sorozattal, hisze a sorozat egymást követő elemei háyadosáak a határértéke potosa az araymetszési álladó: lim F 1 F = 1 5 =. Midez megtalálható az Araymetszési álladó evű oldalo. Az Araymetszési álladó szerkesztése evű oldal bemutatja lépésről-lépésre, hogya kell egy téglalapot az araymetszés aráyai szerit felosztai (7. ábra). A szerkesztés a Vissza és Tovább gombokkal iráyítható. 7. ábra: Negyedik oldal A szerkesztés végére érve, az ábra szemlélteti, hogy a kisebbik téglalap úgy aráylik a agyhoz, mit a agyobbik az egészhez, aimáció segítségével. Az alkalmazás egyik legérdekesebb szerkesztése a Fiboacci spirál. Eze az oldalo követhető a Fiboacci-számokak megfelelő oldalhosszúságú égyzetek egymás mellé helyezése, és azokak a körívekek a megrajzolása, amelyek alkotják a Fiboacci spirált (8. ábra). A felhaszáló itt is befolyásolhatja a szerkesztés lépéseit a Vissza és Tovább gombokkal. 10

11 8. ábra: Ötödik oldal A.fla kiterjesztés Flash aimáció. Tartalmaz fő-kulcsképeket, al-kulcsképeket, gombokat és Actioscript-et. A fő-kulcsképek filmkockakét működek, míg az al-kulcsképek az aimáció átmeeti kockái. A gombok egyszerű két fázisos gombaimációk: ha ráhelyezzük az egér mutatóját, beugraak a saját al-kulcsképjeikbe, amelybe ugyaaz a gomb található, csak aracssárga szíű felirattal. Mide gombra Actioscript va téve, segítségével avigálhatuk bizoyos témákra. A Flash lieáris, olya mit a Program Couter, midig valahol található, ezért iráyítai kell. A fő témák meglettek rajzolva, fő-kulcsképekre lettek téve, és ha aimációról volt szó, akkor az aimáció al-kulcsképek segítségével lett megvalósítva. Például, az Araymetszési álladó szerkesztése evű oldalo megrajzoljuk a szerkesztés első képét (a égyzetet), ez a főkulcsképre kerül, majd a Tovább gomb elvisz a következő kulcsképre, ahol a szerkesztés elmozdult fázisa található. 11

12 4. Eredméyek Az eredméy egy olya oktatóprogram, amely látváyos, diamikus és hatásos. Az alkalmazást haszálhatják taárok, diákok és mide olya felhaszáló, akit érdekel a Fiboaccisorozat, az araymetszési álladó, és a külöböző geometriai szerkesztések. 5. További célok További cél az alkalmazás kibővítése olya geometriai szerkesztésekkel, amelyek érdekesek, és számos felhaszálót érdekelek. Mivel az alkalmazás tartalmaz úgy az iformatika, mid pedig a matematika területé taított ayagrészt, ezért, megfelelő módosításokkal, oktatóprogramkét is kezelhető. 1

13 6. Irodalomjegyzék [1] Bege Atal, Differeciaegyeletek, Egyetemi Kiadó, Kolozsvár, 005. [] Bui Mih Phog, Perfect Numbers Cocerig Fiboacci Sequece, Eötvös Lorád Tudomáyegyetem, Budapest, [3] Fiboacci Numbers, [4] Fiboacci Spirals, [5] Fodorpataki László, Szigyártó Lídia, Bartha Csaba, Növéytai ismeretek, Scietia Kiadó, Kolozsvár, 004, [6] Gerőcs László, A Fiboacci-sorozat általáosítása, Scolar Kiadó, Budapest, [7] Jea Berstel, A Exercise o Fiboacci Represetatio, Gaspard Moge Itézet, Mare -la-vallée, 00. [8] Peter Fewick, Zeckedorf Iteger Arithmetic, The Uiversity of Aucklad, Aucklad. [9] Sai Márto, A Fiboacci-sorozattól láctörtekkel az araymetszésig, Taköyvkiadó, Budapest, 1975,

14 Köszöetyilváítás Ezúto is szereték köszöetet modai témavezetőmek: Bege Atalak, segítsége és biztatása élkül em jöhetett vola létre e dolgozat. Köszööm Fodorpataki Lászlóak a haszos segédayagot. Köszööm Keresztes Zsoltak és Negulescu Mátyásak türelmét és haszos taácsait. 14

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek:

festményeken és nem utolsó sorban az emberi test különböz arányaiban. A következ képek magukért beszélnek: Az araymetszés és a Fiboacci számok mideütt Tuzso Zoltá Araymetszésrl beszélük, amikor egy meyiséget, illetve egy adott szakaszt úgy osztuk két részre, hogy a kisebbik rész úgy aráylik a agyobbikhoz, mit

Részletesebben

A figurális számokról (IV.)

A figurális számokról (IV.) A figurális számokról (IV.) Tuzso Zoltá, Székelyudvarhely A továbbiakba külöféle számkombiációk és összefüggések reprezetálásáról, és bizoyos összegek kiszámolásáról íruk. Sajátos összefüggések Az elekbe

Részletesebben

VII. A határozatlan esetek kiküszöbölése

VII. A határozatlan esetek kiküszöbölése A határozatla esetek kiküszöbölése 9 VII A határozatla esetek kiküszöbölése 7 A l Hospital szabály A véges övekedések tétele alapjá egy függvéy értékét egy potba közelíthetjük az köryezetébe felvett valamely

Részletesebben

2.1. A sorozat fogalma, megadása és ábrázolása

2.1. A sorozat fogalma, megadása és ábrázolása 59. Számsorozatok.. A sorozat fogalma, megadása és ábrázolása.. Defiíció. Azokat az f : N R valós függvéyeket, melyek mide természetes számhoz egy a valós számot redelek hozzá, végtele számsorozatokak,

Részletesebben

Sorozatok A.: Sorozatok általában

Sorozatok A.: Sorozatok általában 200 /2002..o. Fakt. Bp. Sorozatok A.: Sorozatok általába tam_soroz_a_sorozatok_altalaba.doc Sorozatok A.: Sorozatok általába Ad I. 2) Z/IV//a-e, g-m (CD II/IV/ Próbálj meg róluk miél többet elmodai. 2/a,

Részletesebben

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0

Komplex számok. d) Re(z 4 ) = 0, Im(z 4 ) = 1 e) Re(z 5 ) = 0, Im(z 5 ) = 2 f) Re(z 6 ) = 1, Im(z 6 ) = 0 Komplex számok 1 Adjuk meg az alábbi komplex számok valós, illetve képzetes részét: a + i b i c z d z i e z 5 i f z 1 A z a + bi komplex szám valós része: Rez a, képzetes része Imz b Ez alapjá a megoldások

Részletesebben

Gyakorló feladatok II.

Gyakorló feladatok II. Gyakorló feladatok II. Valós sorozatok és sorok Közgazdász szakos hallgatókak a Matematika B című tárgyhoz 2005. október Valós sorozatok elemi tulajdoságai F. Pozitív állítás formájába fogalmazza meg azt,

Részletesebben

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós

Komplex számok (el adásvázlat, 2008. február 12.) Maróti Miklós Komplex számok el adásvázlat, 008. február 1. Maróti Miklós Eek az el adásak a megértéséhez a következ fogalmakat kell tudi: test, test additív és multiplikatív csoportja, valós számok és tulajdoságaik.

Részletesebben

EGY ÚJ SZÁMHÁROMSZÖG A

EGY ÚJ SZÁMHÁROMSZÖG A BELVÁROSI ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM BÉKÉSCSABA EGY ÚJ SZÁMHÁROMSZÖG A KOMBINATORIKÁBAN 0 3 4 5 6 7 8 9 0 0 0 0 3 3 0 4 9 8 6 0 5 44 45 0 0 0 6 65 64 35 40 5 0 7 854 855 94 35 70 0 8 4833 483 740 464

Részletesebben

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo

SZÁMELMÉLET. Vasile Berinde, Filippo Spagnolo SZÁMELMÉLET Vasile Beride, Filippo Spagolo A számelmélet a matematika egyik legrégibb ága, és az egyik legagyobb is egybe Eek a fejezetek az a célja, hogy egy elemi bevezetést yújtso az első szite lévő

Részletesebben

VI.Kombinatorika. Permutációk, variációk, kombinációk

VI.Kombinatorika. Permutációk, variációk, kombinációk VI.ombiatorika. ermutációk, variációk, kombiációk VI..ermutációk ismétlés élkül és ismétléssel (sorredi kérdések) l..) Az,, számjegyekből, ismétlés élkül, háy háromjegyű szám írható? F. 6 db. va. A feti

Részletesebben

IV. Sorozatok. Sorozatok bevezetése

IV. Sorozatok. Sorozatok bevezetése Sorozatok Sorozatok bevezetése 8 Az,,, számjegyek és tegelyes tükörképeik együtt alkotják a sorozat tagjait A folytatás lehetséges például az ábrá látható módoko Megjegyzés: A Hogya folytatható típusú

Részletesebben

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása

Rudas Tamás: A hibahatár a becsült mennyiség függvényében a mért pártpreferenciák téves értelmezésének egyik forrása Rudas Tamás: A hibahatár a becsült meyiség függvéyébe a mért ártrefereciák téves értelmezéséek egyik forrása Megjelet: Agelusz Róbert és Tardos Róbert szerk.: Mérésről mérésre. A választáskutatás módszertai

Részletesebben

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel?

5. Kombinatorika. 8. Legfeljebb hány pozitív egész számot adhatunk meg úgy, hogy semelyik kettő összege és különbsége se legyen osztható 2015-tel? 5. Kombiatorika I. Feladatok. Háyféleképpe olvashatók ki az alábbi ábrákról a PAPRIKAJANCSI, a FELADAT és a MATEMATIKASZAKKÖR szavak, ha midig a bal felső sarokból kell iduluk, és mide lépésük csak jobbra

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Matematikai játékok Svetoslav Bilchev, Emiliya Velikova 1. rész Matematikai tréfák A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a játékosok

Részletesebben

Általános taggal megadott sorozatok összegzési képletei

Általános taggal megadott sorozatok összegzési képletei Általáos taggal megadott sorozatok összegzési képletei Kéri Gerzso Ferec. Bevezetés A sorozatok éháy érdekes esetét tárgyaló el adást az alábbi botásba építem fel:. képletek,. alkalmazások, 3. bizoyítás

Részletesebben

GAZDASÁGI MATEMATIKA 1. ANALÍZIS

GAZDASÁGI MATEMATIKA 1. ANALÍZIS SZENT ISTVÁN EGYETEM GAZDASÁGI, AGRÁR- ÉS EGÉSZSÉGTUDOMÁNYI KAR Dr. Szakács Attila GAZDASÁGI MATEMATIKA. ANALÍZIS Segédlet öálló mukához. átdolgozott, bővített kiadás Békéscsaba, Lektorálták: DR. PATAY

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK

JAVÍTÁSI-ÉRTÉKELÉSI MATEMATIKA ÚTMUTATÓ ÉRETTSÉGI VIZSGA EMELT SZINT% ÍRÁSBELI. ÉRETTSÉGI VIZSGA 2012. október 16. MINISZTÉRIUMA EMBERI ERFORRÁSOK Matematika emelt szit Javítási-értékelési útmutató MATEMATIKA EMELT SZINT% ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERFORRÁSOK MINISZTÉRIUMA ÉRETTSÉGI VIZSGA 0. október. Fotos tudivalók

Részletesebben

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL

AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL 36 MIXCONTROL AZ ÖSSZETÉTEL OPTIMALIZÁLÁSA A VOLUMETRIKUS ASZFALTKEVERÉK- ELLENÕRZÉS MÓDSZERÉVEL Subert Istvá deformáció-elleálló keverékvázat lehet létrehozi. Kiidulási feltétel az alkalmazás helyéek

Részletesebben

Ingatlanfinanszírozás és befektetés

Ingatlanfinanszírozás és befektetés Nyugat-Magyarországi Egyetem Geoiformatikai Kar Igatlameedzser 8000 Székesfehérvár, Pirosalma u. 1-3. Szakiráyú Továbbképzési Szak Igatlafiaszírozás és befektetés 2. Gazdasági matematikai alapok Szerzı:

Részletesebben

18. Differenciálszámítás

18. Differenciálszámítás 8. Differeciálszámítás I. Elméleti összefoglaló Függvéy határértéke Defiíció: Az köryezetei az ] ε, ε[ + yílt itervallumok, ahol ε > tetszőleges. Defiíció: Az f függvéyek az véges helye vett határértéke

Részletesebben

Véges matematika 1. feladatsor megoldások

Véges matematika 1. feladatsor megoldások Véges matematika 1 feladatsor megoldások 1 Háy olya hosszúságú kockadobás-sorozat va, melybe a csak 1-es és 2-es va; Egymástól függetleül döthetük a külöböző dobások eredméyéről, így a taultak szerit a

Részletesebben

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova

Matematikai játékok. Svetoslav Bilchev, Emiliya Velikova Első rész Matematikai tréfák Matematikai játékok Svetoslav Bilchev, Emiliya Velikova A következő matematikai játékokba matematikai tréfákba a végső eredméy a játék kiidulási feltételeitől függ, és em a

Részletesebben

IKT eszközök használata az oktatásban

IKT eszközök használata az oktatásban IKT eszközök haszálata az oktatásba CZÉDLINÉ BÁRKÁNYI Éva Szegedi Tudomáyegyetem Juhász Gyula Pedagógusképző Kar, Szeged czedli@jgypk.u-szeged.hu Tíz éve már, hogy a mitegy egyed százados közoktatási gyakorlat

Részletesebben

Hosszmérés finomtapintóval 2.

Hosszmérés finomtapintóval 2. Mechatroika, Optika és Gépészeti Iformatika Taszék kiadva: 0.0.. Hosszmérés fiomtapitóval. A mérések helyszíe: D. épület 53-as terem. Az aktuális mérési segédletek a MOGI Taszék holapjá érhetők el, a www.mogi.bme.hu

Részletesebben

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag

Numerikus sorok. Kónya Ilona. VIK, Műszaki Informatika ANALÍZIS (1) Oktatási segédanyag VIK, Műszaki Iformatika ANALÍZIS Numerikus sorok Oktatási segédayag A Villamosméröki és Iformatikai Kar műszaki iformatikus hallgatóiak tartott előadásai alapjá összeállította: Fritz Józsefé dr. Kóya Iloa

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei Villamos gépek tatárgy tételei 7. tétel Mi a szerepe az áram- és feszültségváltókak? Hogya kapcsolódak a hálózathoz, milye előírások voatkozak a biztoságos üzemeltetésükre, kiválasztásukál milye adatot

Részletesebben

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2

mateksoft.hu ( ) 2 x 10 y 14 Nevezetes azonosságok: Hatványozás azonosságai Azonos kitevőjű hatványok: + 9 ( 2x 3y) 2 4x 2 12xy + 9y 2 Nevezetes zoosságok: mteksoft.hu ( + ) + + ( x + ) x + 6 x + 9 ( x + y) 4x + 1xy + 9y ( ) + ( x ) x 6 x + 9 ( x y) 4x 1xy + 9y ( + + c) + + c + + c + c ( x + y + ) x + y + 4 + xy + 4x + 4y Htváyozás zoossági

Részletesebben

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn

KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsôn A FIZIKA TANÍTÁSA KAOTIKUS VAGY CSAK ÖSSZETETT? Labdák pattogása lépcsô Griz Márto ELTE Elméleti Fizikai Taszék Meszéa Tamás Ciszterci Red Nagy Lajos Gimázima Pécs, a Fizika taítása PhD program hallgatója

Részletesebben

Statisztika. Eloszlásjellemzők

Statisztika. Eloszlásjellemzők Statsztka Eloszlásjellemzők Statsztka adatok elemzése A sokaság jellemzése középértékekkel A sokaság jellemzéséek szempotja A sokaság jellemzéséek szempotja: A sokaság tpkus értékéek meghatározása. Az

Részletesebben

Lineáris programozás

Lineáris programozás Lieáris progrmozás Lieáris progrmozás Lieáris progrmozás 2 Péld Egy üzembe 4 féle terméket állítk elő 3 féle erőforrás felhszálásávl. Ismert z erőforrásokból redelkezésre álló meyiség (kpcitás), termékek

Részletesebben

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz

Radiális szivattyú járókerék fő méreteinek meghatározása előírt Q-H üzemi ponthoz Radiális szivattyú járóeré fő méreteie meghatározása előírt - üzemi pothoz iret hajtás eseté szóa jövő asziromotor fordlatszámo % üzemi szlip feltételezésével: 90, 55, 970, 78 /mi Midegyi fordlatszámhoz

Részletesebben

Hanka László. Fejezetek a matematikából

Hanka László. Fejezetek a matematikából Haka László Egyetemi jegyzet Budapest, 03 ÓE - BGK - 304 Szerző: Dr. Haka László adjuktus (OE BGK) Lektor: Hosszú Ferec mestertaár (OE BGK) Fiamak Boldizsárak Előszó Ez az elektroikus egyetemi jegyzet

Részletesebben

Hatványozás és négyzetgyök. Másodfokú egyenletek

Hatványozás és négyzetgyök. Másodfokú egyenletek Defiíció: R, Z Htváyozás és égyzetgyök 0 h 0... ( téyezős szorzt) h h 0, 0. A htváyozás zoossági: : m ( ) m m m m m Defiíció: Az x vlós szám ormállkják evezzük z hol 0 és egész szám. 0 kifejezést, h x

Részletesebben

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l!

n akkor az n elem összes ismétléses ... k l k 3 k 1! k 2!... k l! KOMBINATORIKAI ALAPFOGALMAK A ombiatoria általába a véges halmazora voatozó redezési és leszámlálási feladatoal foglalozi. Az elemi ombiatoria legtöbb esetbe a övetező ét érdés egyiére eresi a választ:

Részletesebben

A Venn-Euler- diagram és a logikai szita

A Venn-Euler- diagram és a logikai szita A Ve-Euler- diagram és a logikai szita Ebbe a részbe a Ve-Euler diagramról, a logikai szitáról, és a két témakör kapcsolatáról íruk, számos jellemző, megoldott feladattal szemléltetve a leírtakat. Az ábrákak

Részletesebben

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI

2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2. AZ INFORMÁCIÓS TÁRSADALOM ÉRTELMEZÉSI DIFFERENCIÁINAK TERÜLETI KÖVETKEZMÉNYEI 2.1. Az iformációs társadalom és gazdaság fogalmáak külöbözô értelmezései 2.1.1. Az iformációs társadalom Bármely iformációs

Részletesebben

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója

1.1 Példa. Polinomok és egyenletek. Jaroslav Zhouf. Első rész. Lineáris egyenletek. 1 A lineáris egyenlet definíciója Poliomok és egyeletek Jaroslav Zhouf Első rész Lieáris egyeletek A lieáris egyelet defiíciója A következő formájú egyeleteket: ahol a, b valós számok és a + b 0, a 0, lieáris egyeletek hívjuk, az ismeretle

Részletesebben

Statisztikai hipotézisvizsgálatok

Statisztikai hipotézisvizsgálatok Statisztikai hipotézisvizsgálatok. Milye problémákál haszálatos? A gyakorlatba agyo gyakra szükségük lehet arra, hogy mitákból származó iformációk alapjá hozzuk sokaságra voatkozó dötéseket. Például egy

Részletesebben

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov.

Pályázat címe: Pályázati azonosító: Kedvezményezett: Szegedi Tudományegyetem Cím: 6720 Szeged, Dugonics tér 13. www.u-szeged.hu www.palyazat.gov. Pályázat címe: Új geerációs sorttudomáyi kézés és tartalomfejlesztés, hazai és emzetközi hálózatfejlesztés és társadalmasítás a Szegedi Tudomáyegyeteme Pályázati azoosító: TÁMOP-4...E-5//KONV-05-000 Sortstatisztika

Részletesebben

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha

Innen. 2. Az. s n = 1 + q + q 2 + + q n 1 = 1 qn. és q n 0 akkor és csak akkor, ha q < 1. a a n végtelen sor konvergenciáján nem változtat az, ha . Végtele sorok. Bevezetés és defiíciók Bevezetéskét próbáljuk meg az 4... végtele összegek értelmet adi. Mivel végtele sokszor em tuduk összeadi, emiatt csak az első tagot adjuk össze: legye s = 4 8 =,

Részletesebben

I. FEJEZET BICIKLIHIÁNYBAN

I. FEJEZET BICIKLIHIÁNYBAN I FEJEZET BICIKLIHIÁNYBAN 1 Az alapfeladat 1 Feladat Két település közti távolság 40 km Két gyerekek ezt a távolságot kellee megteie a lehetőlegrövidebb időalattakövetkező feltételek mellett: Va egy biciklijük

Részletesebben

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8

Kalkulus I. Első zárthelyi dolgozat 2014. szeptember 16. MINTA. és q = k 2. k 2. = k 1l 2 k 2 l 1. l 1 l 2. 5 2n 6n + 8 Név, Neptu-kód:.................................................................... 1. Legyeek p, q Q tetszőlegesek. Mutassuk meg, hogy ekkor p q Q. Tegyük fel, hogy p, q Q. Ekkor létezek olya k 1, k 2,

Részletesebben

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet

Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar. Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz. Halmazelmélet Debrecei Egyetem Közgazdaság- és Gazdaságtudomáyi Kar Feladatok a Gazdasági matematika I. tárgy gyakorlataihoz a megoldásra feltétleül ajálott feladatokat jelöli e feladatokat a félév végére megoldottak

Részletesebben

Kidolgozott feladatok a nemparaméteres statisztika témaköréből

Kidolgozott feladatok a nemparaméteres statisztika témaköréből Kidolgozott feladatok a emparaméteres statisztika témaköréből A tájékozódást mideféle szíkódok segítik. A feladatok eredeti szövege zöld, a megoldások fekete, a figyelmeztető, magyarázó elemek piros szíűek.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek megoldásához!

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy KHF/438-3/008. egedélyszámo 008..0. időpottól taköyvi egedélyt kapott Educatio Kht. Kompeteciafejlesztő oktatási program kerettaterv

Részletesebben

A logaritmus függvény bevezetése és alkalmazásai

A logaritmus függvény bevezetése és alkalmazásai Eötvös Loád Tudomáyegyetem Temészettudomáyi Ka A logaitmus függvéy bevezetése és alkalmazásai Szakdolgozat Készítette: Témavezető: Lebaov Dóa Mezei Istvá Adjuktus Matematika Bs Alkalmazott Aalízis és Matematikai

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika. évfolyam TANULÓK KÖNYVE A kiadváy a Nemzeti Fejlesztési Terv Humáerőforrás-fejlesztési Operatív Program 3... közpoti program (Pedagógusok és oktatási szakértők

Részletesebben

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/)

3. Sztereó kamera. Kató Zoltán. Képfeldolgozás és Számítógépes Grafika tanszék SZTE (http://www.inf.u-szeged.hu/~kato/teaching/) 3. Sztereó kamera Kató Zoltá Képfeldolgozás és Számítógépes Grafika taszék SZTE (http://www.if.u-szeged.hu/~kato/teachig/) Sztereó kamerák Az emberi látást utáozza 3 Sztereó kamera pár Két, ugaazo 3D látvát

Részletesebben

10. évfolyam, harmadik epochafüzet

10. évfolyam, harmadik epochafüzet 0. évfolyam, harmadik epochafüzet (Sorozatok, statisztika, valószíűség) Tulajdoos: MÁSODIK EPOCHAFÜZET TARTALOM I. Sorozatok... 4 I.. Sorozatok megadása, defiíciója... 4 I.. A számtai sorozat... 0 I...

Részletesebben

A települési hősziget-intenzitás Kárpátalja alföldi részén 1

A települési hősziget-intenzitás Kárpátalja alföldi részén 1 A települési hősziget-itezitás Kárpátalja alföldi részé Molár József, Kakas Móika, Marguca Viola A települési hőszigetek kifejlődéséek vizsgálata az urbaizáció folyamatáak előrehaladásával párhuzamosa

Részletesebben

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok

Valós számok 5. I. Valós számok. I.1. Természetes, egész és racionális számok Valós számok 5 I Valós számok I Természetes, egész és racioális számok I Feladatok (8 oldal) Fogalmazz meg és bizoyíts be egy-egy oszthatósági kritériumot a -vel, -mal, 5-tel, 7-tel, 9-cel, -gyel való

Részletesebben

Tranziens káosz nyitott biliárdasztalokon

Tranziens káosz nyitott biliárdasztalokon Eötvös Lorád Tudomáyegyetem Természettudomáyi kar Vicze Gergely Trazies káosz yitott biliárdasztaloko Msc szakdolgozat Témavezető: Tél Tamás, egyetemi taár Elméleti Fizikai Taszék Budapest, 2012 1 Tartalom

Részletesebben

Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2

Csapágyak üzem közbeni vizsgálata a csavarhúzótól a REBAM 1 -ig 2 ÜZEMFENNTARTÁSI TEVÉKENYSÉGEK 3.9 Csapágyak üzem közbei vizsgálata a csavarhúzótól a REBAM 1 -ig 2 Gergely Mihály okl. gépészmérök, Acceleratio Bt. Budapest Tóbis Zsolt doktoradusz, Miskolci Egyetem Gépelemek

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

A HŐMÉRSÉKLETI SUGÁRZÁS

A HŐMÉRSÉKLETI SUGÁRZÁS A HŐMÉRSÉKLETI SUGÁRZÁS 1. Törtéeti összefoglaló A tizekilecedik század végé a fizikát lezárt tudomáyak tartották. A sikeres Newto-i mechaika és gravitációs elmélet alapjá a Napredszer bolygóiak mozgása

Részletesebben

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal

képzetes t. z = a + bj valós t. a = Rez 5.2. Műveletek algebrai alakban megadott komplex számokkal 5. Komplex számok 5.1. Bevezetés Taulmáyaik sorá többször volt szükség az addig haszált számfogalom kiterjesztésére. Először csak természetes számokat ismertük, később haszáli kezdtük a törteket, illetve

Részletesebben

Az iparosodás és az infrastrukturális fejlődés típusai

Az iparosodás és az infrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés típusai Az iparosodás és az ifrastrukturális fejlődés kapcsolatába törtéelmileg három fejlődési típus vázolható fel: megelőző, lácszerűe együtt haladó, utólagosa

Részletesebben

Feladatok és megoldások a 11. heti gyakorlathoz

Feladatok és megoldások a 11. heti gyakorlathoz Feladatok és megoldások a. het gyakorlathoz dszkrét várható érték Építőkar Matematka A. Egy verseye öt ő és öt férf verseyző dul. Tegyük fel, hogy cs két azoos eredméy, és md a 0! sorred egyformá valószíű.

Részletesebben

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása

Numerikus módszerek 2. Nemlineáris egyenletek közelítő megoldása Numerius módszere. Nemlieáris egyelee özelíő megoldása Egyelemegoldás iervallumelezéssel A Baach-ipo-ierációs módszer A Newo-módszer és válozaai Álaláosío Newo-módszer Egyelemegoldás iervallumelezéssel

Részletesebben

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13

Tartalomjegyzék. Pemutáció 5 Ismétléses permutáció 8 Variáció 9 Ismétléses variáció 11 Kombináció 12 Ismétléses kombináció 13 Tartalomjegyzék I Kombiatorika Pemutáció Ismétléses permutáció 8 Variáció 9 Ismétléses variáció Kombiáció Ismétléses kombiáció II Valószíségszámítás M/veletek eseméyek között 6 A valószí/ség fogalma 8

Részletesebben

Szemmegoszlási jellemzők

Szemmegoszlási jellemzők Szemmegoszlási jellemzők Németül: Agolul: Charakteristike er Korgrößeverteilug Characteristics of particle size istributio Fraciául: Caractéristique e compositio graulométrique Kutatási, fejlesztési és

Részletesebben

1. Az absztrakt adattípus

1. Az absztrakt adattípus . Az asztrakt adattípus Az iformatikáa az adat alapvető szerepet játszik. A számítógép, mit automata, adatokat gyűjt, tárol, dolgoz fel (alakít át) és továít. Mi adatak foguk tekitei mide olya iformációt,

Részletesebben

25. Matematikai logika, bizonyítási módszerek

25. Matematikai logika, bizonyítási módszerek 5. Matematikai logika, bizoyítási módszerek I. Elméleti összefoglaló Logikai műveletek A matematikai logika állításokkal foglalkozik. Az állítás (vagy kijeletés) olya kijelető modat, amelyről egyértelműe

Részletesebben

Rádiókommunikációs hálózatok

Rádiókommunikációs hálózatok Rádiókommuikációs hálózatok Készült az NJSZT Számítógéphálózat modellek Tavaszi Iskola elöadás-sorozataihoz. 977-980. Gyarmati Péter IBM Research, USA; Budapest Föváros Taácsa. I this paper we show a somewhat

Részletesebben

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN

ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Eötvös Lorád Tudomáyegyetem, Természettudomáyi Kar Matematikataítási és Módszertai Közpot ALGORITMUSOK A MATEMATIKAOKTATÁSBAN Készítette: Varga Viktória Matematika Bsc taári szakiráy Témavezető: Fried

Részletesebben

Kombinatorika feladatok

Kombinatorika feladatok Kombiatorika feladatok 1. Tüdérországba csak 2 magáhagzót és 2 mássalhagzót haszálak. A szavakba legalább 1 mássalhagzó és legalább 1 magáhagzó va. Háy külöböző hárombetűs szó létezik Tüdérországba, ha

Részletesebben

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise

Nagyméretű nemlineáris közúti közlekedési hálózatok speciális analízise Nagyméretű emlieáris közúti közlekedési hálózatok speciális aalízise Dr. Péter Tamás* *Budapesti Műszaki és Gazdaságtudomáyi Egyetem Közlekedéautomatikai Taszék (tel.: +36--46303; e-mail: peter.tamas@mail.bme.hu

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

A húrnégyszögek meghódítása

A húrnégyszögek meghódítása A húrnégyszögek meghódítása A MINDENTUDÁS ISKOLÁJA Gerőcs lászló A HÚRNÉGYSZÖGEK MEGHÓDÍTÁSA Akadémiai Kiadó, Budapest ISBN 978 963 05 8969 7 Kiadja az Akadémiai Kiadó, az 1795-ben alapított Magyar Könyvkiadók

Részletesebben

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t.

2 x. Ez pedig nem lehetséges, mert ilyen x racionális szám nincs. Tehát f +g nem veszi fel a 0-t. Ászpóke csapat Kalló Beát, Nagy Baló Adás Nagy Jáos, éges Máto Fazekas tábo 008. Igaz-e, hogy ha az f, g: Q Q függvéyek szigoúa ooto őek és étékkészletük a teljes Q, akko az f g függvéy étékkészlete is

Részletesebben

3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése

3.1.1. Rugalmas elektronszórás; Recoil- és Doppler-effektus megfigyelése 3.1.1. Rugalmas elektroszórás 45 3.1.1. Rugalmas elektroszórás; Recoil- és Doppler-effektus megfigyelése Aray, ikkel, szilícium és grafit mitákról rugalmasa visszaszórt elektrook eergiaeloszlását mértem

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Sorozatok A szürkített hátterű feladatrészek em tartozak az éritett témakörhöz, azoba szolgálhatak fotos iformációval az éritett feladatrészek

Részletesebben

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL

V. GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 86 Összefoglaló gyaorlato és feladato V GYAKORLATOK ÉS FELADATOK ALGEBRÁBÓL 5 Halmazo, relácó, függvéye Bzoyítsd be, hogy ha A és B ét tetszőleges halmaz, aor a) P( A) P( B) P( A B) ; b) P( A) P ( B )

Részletesebben

ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT

ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT ANDRÁS SZILÁRD, CSAPÓ HAJNALKA, NAGY ÖRS SIPOS KINGA, SOÓS ANNA, SZILÁGYI JUDIT KÍVÁNCSISÁGVEZÉRELT MATEMATIKA TANÍTÁS STÁTUS KIADÓ CSÍKSZEREDA, 010 c PRIMAS projekt c Adrás Szilárd Descrierea CIP a Bibliotecii

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel

mintásfal 60 40 2 2 mintásfal :m :sz :dbjobbra :dbfel 6.osztály 1.foglalkozás 6.osztály 2.foglalkozás kocka kockafal :db minta Készítsd el ezt a mintát! A minta hosszú oldala 60 a rövid oldala 40 egység hosszú. A hosszú oldal harmada a négyzet oldala! A háromszög

Részletesebben

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I

AZ ÉPÍTÉSZEK MATEMATIKÁJA, I BARABÁS BÉLA FÜLÖP OTTÍLIA AZ ÉPÍTÉSZEK MATEMATIKÁJA, I Ismertető Tartalomjegyzék Pályázati támogatás Godozó Szakmai vezető Lektor Techikai szerkesztő Copyright Barabás Béla, Fülöp Ottília, BME takoyvtar.math.bme.hu

Részletesebben

3.3 Fogaskerékhajtások

3.3 Fogaskerékhajtások PTE, PMMK Stampfer M.: Gépelemek II / Mechaikus hajtások II / 7 / 3.3 Fogaskerékhajtások Jó tulajoságaikak köszöhetőe a fogaskerékhajtóművek a legelterjetebbek az összes mechaikus hajtóművek közül. A hajtás

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

NEHÉZ ELEMEK KELETKEZÉSE CSILLAGOKBAN FORMATION OF HEAVY ELEMENTS IN STARS

NEHÉZ ELEMEK KELETKEZÉSE CSILLAGOKBAN FORMATION OF HEAVY ELEMENTS IN STARS EHÉZ ELEMEK KELETKEZÉSE CSILLGOKB FORMTIO OF HEVY ELEMETS I STRS Kiss Miklós Berze agy Jáos Gimázium Gyögyös/Debrecei Egyetem Fizika Doktori Iskola ÖSSZEFOGLLÁS vaso túli ehéz elemek keletkezéséek kérdése

Részletesebben

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4

1 = 1x1 1+3 = 2x2 1+3+5 = 3x3 1+3+5+7 = 4x4 . Orchidea Iskola VI. Matematika verseny 0/0 II. forduló = x + = x ++ = x +++ = x Ennek ismeretében mennyivel egyenlő ++++...+9+99=? A ) 0. D ) 0 000 6 C ) 0 D ) A Földközi-tengerben a só-víz aránya :

Részletesebben

Egyszerő kémiai számítások

Egyszerő kémiai számítások Egyszerő kéiai száítások z egyes fizikai, illetve kéiai eyiségek közötti összefüggéseket éréssel állapítjuk eg. hhoz, hogy egy eyiséget éri tudjuk, a eyiségek valaely rögzített értékét (értékegység) kell

Részletesebben

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága

Azonos névleges értékű, hitelesített súlyokból alkotott csoportok együttes mérési bizonytalansága Azoos évleges értékű, htelesített súlyokból alkotott csoportok együttes mérés bzoytalasága Zeleka Zoltá* Több mérés feladatál alkalmazak súlyokat. Sokszor ezek em egyekét, haem külöböző társításba kombácókba

Részletesebben

PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László

PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ. Írta Dr. Huzsvai László PÉLDATÁR A SZÁMÍTÓGÉPES TESZTHEZ Írta Dr. Huzsvai László Debrece 2012 Tartalomjegyzék Bevezetés...1 Viszoyszámok...1 Középértékek (átlagok)...2 Szóródási mutatók...4 Idexek...7 Furfagos kérdések...8 Bevezetés

Részletesebben

Feladatok MATEMATIKÁBÓL

Feladatok MATEMATIKÁBÓL Feladatok MATEMATIKÁBÓL a 1. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! a) b) 7 c) 5 d) 5 1 e) 6 1 6 f) ( 81 16 ) g) 0,00001 5. Írjuk fel gyökjelekkel a következő hatványokat!

Részletesebben

FELADATOK a Bevezetés a matematikába I tárgyhoz

FELADATOK a Bevezetés a matematikába I tárgyhoz FELADATOK a Bevezetés a matematiába I tárgyhoz a számítástechia taár főisolai és a programozó matematius szao számára 2004 ovember 4 FIGYELEM: a számtech szaosoa csa a övetező feladato ellee: 2,6,7,8,9-13,16-25,27,31-33

Részletesebben

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma

194 Műveletek II. MŰVELETEK. 2.1. A művelet fogalma 94 Műveletek II MŰVELETEK A művelet fogalma Az elmúlt éveke már regeteg művelettel találkoztatok matematikai taulmáyaitok sorá Először a természetes számok összeadásával találkozhattatok, már I első osztálya,

Részletesebben

6. Elsőbbségi (prioritásos) sor

6. Elsőbbségi (prioritásos) sor 6. Elsőbbségi (prioritásos) sor Közapi fogalma, megjeleése: pl. sürgősségi osztályo a páciesek em a beérkezési időek megfelelőe, haem a sürgősség mértéke szerit kerülek ellátásra. Az operációs redszerekbe

Részletesebben

PELTON TURBINA MÉRÉSE

PELTON TURBINA MÉRÉSE idrodiamikai Redszerek Taszék PELTON TURBINA MÉRÉSE 1. A mérés célja A mérés célja egy, a gyógyszer- és vegyiparba eergia visszayerés céljára haszálatos saválló jelleggörbéiek felvétele. A turbia jellemzői:

Részletesebben

AZ ÉPÜLETGÉPÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI

AZ ÉPÜLETGÉPÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI AZ ÉÜLETGÉÉSZETI RENDSZEREK ENERGIA-HATÉKONYSÁGÁNAK KÉRDÉSEI Szivattyúzás - rövide örös Szilárd Cetrifugál szivattyú Nyomó oldal Járókerék Járókerék lapát Járókerék él Járókerék csavar a szállított közeg

Részletesebben

PROJEKTÉRTÉKELÉSI ALAPOK

PROJEKTÉRTÉKELÉSI ALAPOK Eegeikai gazdasága MKEE. gyakola PROJEKTÉRTÉKELÉSI ALAPOK A gyakola célja, hogy a hallgaók A. megismejék az alapveő közgazdaságai muaóka; B. egyszeű pojekéékelési számíásoka udjaak elvégezi. A. KÖZGAZDASÁGTANI

Részletesebben

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról

Csernicskó István Hires Kornélia A kárpátaljai magyarok lokális, regionális és nemzeti identitásáról 8 Sztakó Péter 00 Eticitás Körösszakálo. Szakdolgozat. DENIA (Debrecei Néprajzi Itézet Adattára) Vermeule, Has Govers, Cora (ed.) 99 The Atropology of Ethicity. Beyod Ethic Groups ad Boudaries. Amsterdam:

Részletesebben

Ismétlő feladatsor: 10.A/I.

Ismétlő feladatsor: 10.A/I. Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!

Részletesebben

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör

Az állat becsült kor. teljes súly. teljes hossz orrtól. törzs hossza. pocak körkörös méret. hátsó láb hossza kör Koeláció- és egesszió-aalízis Az is előfodulhat, hogy két változó között ics semmilye kapcsolat: Az X és Y véletle változók között az alábbi ábáko Az állat becsült ko pozitív összefüggés em lieáis összefüggés

Részletesebben

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu

FANTASZTIKUS KOMBINATORIKA. Adva van n különböző elem. A kiválasztás sorrendje számít VARIÁCIÓ. mateking.hu FANTASZTIKUS KOMBINATORIKA Adva va külöböző elem Kiválasztuk k darabot Vesszük az összes elemet és sorba rakjuk A kiválasztás sorredje számít A kiválasztás sorredje em számít PERMUTÁCIÓ P matekig.hu Ha

Részletesebben

Az összekapcsoltság hatása a rendszerkockázatra. homogén bankrendszerben

Az összekapcsoltság hatása a rendszerkockázatra. homogén bankrendszerben MŰHELYTANULMÁNYOK DISCUSSION PAPERS MT-DP 2015/10 Az összekapcsoltság hatása a redszerkockázatra homogé bakredszerbe CSÓKA PÉTER KISS TAMÁS MTA KÖZGAZDASÁG- ÉS REGIONÁLIS TUDOMÁNYI KUTATÓKÖZPONT KÖZGAZDASÁG-TUDOMÁNYI

Részletesebben

DIGITÁLIS DOMBORZATMODELLEK ELŐÁLLÍTÁSI TECHNOLÓGIÁI ÉS MINŐSÉGI PARAMÉTEREI

DIGITÁLIS DOMBORZATMODELLEK ELŐÁLLÍTÁSI TECHNOLÓGIÁI ÉS MINŐSÉGI PARAMÉTEREI Koós Tamás Zríyi Miklós Nemzetvédelmi Egyetem koos.tamas@zme.hu DIGITÁLIS DOMBORZATMODELLEK ELŐÁLLÍTÁSI TECHNOLÓGIÁI ÉS MINŐSÉGI PARAMÉTEREI Absztrakt A tériformatikai szoftverek egyre szélesebb köre képes

Részletesebben

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya

2. Az együttműködő villamosenergia-rendszer teljesítmény-egyensúlya II RÉZ 2 EJEZE 2 Az együttműködő vllamoseerga-redszer teljesítméy-egyesúlya 2 A frekveca és a hatásos teljesítméy között összefüggés A fogyasztó alredszerbe a fogyasztók hatásos wattos teljesítméyt lletve

Részletesebben