Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok)."

Átírás

1 Többváltozós roblémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független változó, vagy több függő és független változó (vektor változók). l. 889 február.-én Rhode Island-en egy nagyvihar után 49 haldokló verebet vittek be a Brown Egyetem biológiai laboratóriumába. Ezek után a madaraknak kb a fele elusztult, és Hermon Bumus ezt egy jó alkalomnak találta a természetes szelekció hatásának vizsgálatára. A madarak 5 testmérete sorrendben: teljes hossz, szárnytávolság, csőr és fej hossz, felkar hossz, mellcsont hossza. Ezek a változók most egy vektorváltozót alkotnak. Eloszlás: általában többváltozós normális. Közéontja: centroid, várható érték vektor. Várható érték: μ x μ x μ= és ennek becslése a mintából: x = M M μ x 3

2 A szórás helyett kovariancia mátrix : cov(x,y)= μ{(x-μ(x))(y-μ(y))} Ha X=Y, akkor a kovariancia a változó varianciája. cov σ cov, X = M cov, ( ) ( X) ( X X) ( X X ) σ ( X ) cov,... ( X X ) σ ( X ) n n-ed rendű mátrix, szimmetrikus, és nincs negatív sajátértéke. A korrelációs mátrix, ha: n. R(X,Y) = μ{(x-μ(x))(y-μ(y))}/{σ(x)σ(y)}, RX R( X ) = M RXn A verebek esetén: teljes hossz (, X) (, X) szarnytavolsag csor es fej hossz felkar hossz mellcsont hossza ( X) RX,... Mean Variance

3 > var(vereb[,:6]) X X X3 X4 X5 X X X X X > cor(vereb[,:6]) X X X3 X4 X5 X X X X X Ha csoortokat alkotnak a megfigyelési egységek, akkor itt is lehet csoortok közötti (between grous) és csoortokon belüli kovariancia mátrixokról beszélni. A módszereknél általában feltétel a csoortokon belüli kovariancia mátrixok egyezősége. 5

4 Többváltozós roblémák. Verebek a viharban TULEL Grou Total nem elte tul a vihart tulelte a vihart Count Maximum Mean Median Minimum Std Deviation Count Maximum Mean Median Minimum Std Deviation Variance Count Maximum Mean Median Minimum Std Deviation Variance teljes csor es fej felkar mellcsont hossz szarnytavolsag hossz hossz hossza Variance Milyen kérdéseket lehet feltenni? Milyen kacsolatban vannak egymással a mért változók? Túlélők, nem túlélők átlagai, szórásai különböznek-e? (Variancia-analízis, F-róba, Levene róba) Ha a túlélők és nem túlélők különböznek a mért változók eloszlásai szemontjából, akkor lehetséges-e konstruálni egy olyan függvényét ezeknek a változóknak, amely szétválasztja a két csoortot. Ha ez nagy a túlélőkre és kicsi a nem túlélőkre, akkor ez lehetne a darwini fitnesszre egy index. 6

5 . Egyitomi koonyák Thébából származó férfi koonyák 5 korszakból. Mindegyikből darab.. Korai redinasztikus kor (4000 ie). Késő redinasztikus kor (3300 ie) dinasztia (850 ie) 4. Ptolemaioszi kor (00 ie) 5. Római kor (50 iu) Milyen kacsolatban van a 4 mért érték egymással? Van-e szignifikáns differencia a mintaátlagok illetve szórások között, és ha igen, akkor ez tükrözi-e fokozatos időbeli változást? Lehetséges-e konstruálni egy f függvényét a 4 változónak, amely valamilyen értelemben visszatükrözi a minták közti különbségeket? 7

6 DINASZT.00 Count X X X3 X Maximum Mean Minimum Std Err of Mean Std Deviation Variance Count Maximum Mean Minimum Std Err of Mean Std Deviation Variance Count Maximum Mean Minimum Std Err of Mean Std Deviation Variance Count Maximum Mean Minimum Std Err of Mean Std Deviation Variance Count Maximum Mean Minimum Std Err of Mean Std Deviation Variance

7 Alavető technika: eredeti változók olyan lineáris kombinációját létrehozni, ami összegzi az eredeti adathalmaz varianciáját. Az eredeti adatok: Objektum X X... X x x... x x x... x M n x n x n x n Zi = aix + aix aix Az ilyen függvényeket szokták diszkriminancia függvényeknek, főkomonenseknek, kanonikus függvényeknek, faktoroknak nevezni. analógia: regressziós függvény Időnként még egy lusz konstans is van benne, ekkor: Z = a + a X + a X a i i0 i i i X (Megj: ha az adatok standardizáltak, akkor a konstans 0.) A látens (extracted) változók általános tulajdonságai: az első magyarázza a variancia legnagyobb részét, a második a maradékból a legnagyobb részt, stb.; nem korreláltak, merőlegesek-függetlenek számuk = (a régi változók száma) megj.: csak néhányat tartunk meg belőlük. 9

8 Sajátértékek, sajátvektorok Eredeti össz variancia: S(cov(X))= λ. Ha a változók standardizáltak, akkor i= i λ =. i= Sajátvektorok: új változók együtthatói, az a ij -k. > eigen(cor(vereb[,:6])) $values [] $vectors [,] [,] [,3] [,4] [,5] [,] [,] [3,] [4,] [5,] Hogy lehet a sajátértékeket sajátvektorokat kiszámítani?. Asszociációs mátrix s.é.-ei, s.v.-ai: sektrál felbontás. Az eredeti vagy a standardizált adatmátrix szinguláris érték felbontásával. (Kontingencia táblákra is működik.) R-mode analízis: a változók cov vagy R mátrixából indulunk ki. szkór (score): új változókból számítjuk ki a megfigyelési egységekre. Q-mode analízis: a megfigyelési egységek cov vagy R mátrixából indulunk ki, az objektumok lin. komb.-jait kajuk. i 30

9 (mátrix algebrával összekacsolhatók) A Q-mode analízis különbségi mértékeken alaul (dissimilarity measures) s.é., s.v. számítás: kanonikus korreláció analízis, főkomonens analízis és korresondencia analízis Ha az objektumok csoortokat alkotnak, akkor úgy lehet kiszámítani a komonenseket, hogy azok a csoortok közötti különbségeket a leginkább kihangsúlyozzák: MANOVA, diszkriminancia elemzés. 3

10 Többváltozós exloratív elemzés Többváltozós grafikonok Szokásos egyváltozósak. Chernoff arcok, csillagok 3

11 >stars(vereb[,:6]) Szórásdiagram mátrix. >airs(vereb[,:6]) 33

12 Szórás diagram az új, látens változókkal. Kétváltozós boxlot 34

13 35

14 Töbváltozós távolságok, hasonlóságok Hasonlósági mértékek (similarity measures): mennyire hasonlóak az objektumok: korreláció Különbözőségi mértékek (dissimilarity measures): többváltozós távolság. Többváltozós roblémák - egyedi megfigyelések, minták, illetve oulációk közötti távolságok. Egyedi megfigyelések közti távolságok: Legegyszerűbb eset: n egyeden változót X, X,..., X mérünk. Az i-edik egyed mért értékei: xi, xi,..., xi, a j-ediké: xj, xj,..., xj. Ha =, akkor a két ont távolságát a Pitagorasz tétel alaján számíthatjuk: dij = ( xi xj) + ( xi xj) Több változó esetére is működik: ( ) d = x x ij ik jk k= Euklideszi távolság. Ha egy változó sokkal variabilisebb a többinél, akkor az dominálja a távolságot. Standardizálás.. 36

15 l. Thaiföldi rehisztorikus kutyák kb ie 3500-ból származó kutyacsontokat találtak. Nem világos, hogy honnan származtatható a rehisztorikus kutya, az arany sakáltól (Canis aureus), vagy a farkastól. Az eredet kiderítése végett méréseket végeztek az alsó állkaocs csontokon, illetve más fajták állkacsán. A mért változók: X - az állkaocs szélessége, X - az állkaocs magassága az első záfog alatt, X 3 - az első záfog hossza, X 4 - az első záfog szélessége, X 5 - az első és harmadik záfog közötti távolság (beleértve a záfogakat is), X 6 - az első és negyedik záfog közötti távolság (beleértve a záfogakat is). A mérések átlagai: X X X 3 X 4 X 5 X 6 Modern kutya Arany sakál Kínai farkas Indiai farkas Kujon Dingó Prehisztorikus kutya Forrás: Higham et al. (980). 37

16 A standardizált értékek X X X 3 X 4 X 5 X 6 Modern kutya Arany sakál Kínai farkas Indiai farkas Kujon Dingó Prehisztorikus kutya :Modern kutya :Arany sakal 3:Kinai kutya 4:Indiai kutya 5:Kujon 6:Dingo 7:Prehisztorikus kutya This is a dissimilarity matrix Proximity Matrix Euclidean Distance :Modern :Arany 3:Kinai 4:Indiai 7:Prehisztorikus kutya sakal kutya kutya 5:Kujon 6:Dingo kutya Ez is négyzetes mátrix, szimmetrikus és 0-ák vannak az átlóban. City-block (Manhattan) távolság: d ij = k= x ik x jk. Hasonló eredményt ad az előzőhöz, de nem olyan érzékeny az outlierekre. Csebisev (Chebychev) távolság: 38

17 Ha csak dimenzióban nézzük a különbséget. d ij = max x k ik x jk Hatvány (Power, Costumized) távolság:ha a növelni vagy csökkenteni akarjuk azoknak a dimenzióknak a súlyát, amelyek esetén különböznek az objektumok: d Az n és r értékét mi választhatjuk meg. ij = k= Az n az egyedi dimenziók közötti távolságokat súlyozza, az r edig az egyes megfigyelt egyedek közöttieket. Ha n = r, akkor Minkowsky távolságnak nevezzük. Bray-Curtis (Kulczynski): faj abudancia adatok esetén használatos. Gyakorisági értékek esetén: Chi-négyzet (Chi-square). A szokásos módon számolt χ -érték. Phi-négyzet (Phi-square) Az előző normalizálva. Jaccard e.h.: bináris skálán mért (rezencia, abszencia) adatokra. a a + b + c a azoknak a változóknak a száma, amelyek esetén egyik objektum értéke sem 0 b ahol az egyik 0, c ahol a másik 0. x ik y jk n r. 39

18 Gower e.h.: lehetnek folytonos és kategoriális változók is. Dissim. mértékek tulajdonságai: metrikusság: háromszög készíthető a 3 ont áronkénti távolságaiból. Általában ilyenek, Bray-Curtis nem. MDA-nál lényeges tulajdonság. 40

19 Mikor melyiket használjuk? Ha a változók hasonló skálán mértek és nincs 0 értékük, akkor Euklideszi, City-block. Ha nem hasonló a skála, akkor először standardizálni kell! Fajok abundanciája esetén olyan kell, amely maximális akkor, ha nincs közös faj a két mintavételi egységen: Bray-Curtis, Kulczynski jó. Távolsági mátrixok összehasonlítása Mantel-teszt l.: genetikus távolságok - földrajzi, időbeli távolságok. Távolságok oulációk és minták között Mahalanobis távolság: v rs D ij ri rj r= s= rs ( ) v ( si sj ) = μ μ μ μ, ahol a kovariancia mátrix inverzének az r-edik sorában és s- edik oszloában álló eleme. Máské: = μ μ C μ μj kvadratikus alak, ahol ( ) ( ) D ij i j i 4

20 μi μ i μi =, az i-edik ouláció várható érték vektora. C a M μ i kovariancia mátrix. Használható egy egyednek a ouláció közéontjától mért távolságának mérésére is: rs ( ) ( ) Dij = xr μr v xs μ s, r= s= ahol az egyeden mért értékek: x, x,..., x és a megfelelő ouláció átlagok: μ, μ,..., μ. Úgy tekinthető, mint az x megfigyelés többváltozós reziduuma, azaz, hogy milyen messze van x az összes változó eloszlásának közéontjától. Figyelembe veszi a változók közti korrelációt is. Ha a ouláció többváltozós normális eloszlást követ, akkor χ eloszlású szabadsági fokkal. Ha D értéke szignifikánsan nagy (P<0.00), akkor a megfigyelésünk vagy hibás, vagy egy extremális megfigyelés. A ouláció átlagokat és a kovariancia mátrixot a mintából becsülhetjük. D 4

21 l. Az egyitomi koonya minták közötti távolságok: Covarian Correlati X X X3 X4 X X X3 X4 Pooled Within-Grous a. The covariance matrix has 45 degrees X X X3 X E E E E a Grou Statistics DINASZT Total X X X3 X4 X X X3 X4 X X X3 X4 X X X3 X4 X X X3 X4 X X X3 X4 Std. Valid N (listwise) Mean Deviation Unweighted Weighted A Mahalanobis távolságok: 43

22 Dinasztia megj: Az ún. Mantel teszttel lehet mérni két távolság mátrix hasonlóságát. Ebben az esetben éldául azt, hogy a dinasztiák távolságainak mátrixa korrelál-e az időbeli távolságok mátrixával. (igen) 44

23 Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát, így az átlag 0 lesz. (Sektrál felbontás esetén tulajdonkéen a centrált adatok kovariancia mátrixával dolgozunk.) Standardizálás: korrelációs mátrix standardizált adatok kovariancia mátrixa. Relatív értékek (arányok): legnagyobb értékkel osztjuk az összeset. Megfigyelési egységeket is lehet standardizálni. Abundancia adatoknál fontos, ha a megfigyelési egységek mérete különböző. (arányok) 0,-é is lehet konvertálni. Sokszor hasznos lehet különböző módokon standardizálni és összehasonlítani az eredményeket: eredeti standardizált 0, eredeti: legnagyobb abundanciájú mit befolyásol 0, : rezencia, abszenciától mi függ. Asszociációs mértékek imlicit módon standardizáltak. 45

24 Az, hogy a kovariancia vagy korrelációs mátrixot használjuk attól függ, hogy a varianciák különbsége fontos-e biológiai szemontból. 46

25 Hiányzó adatok MCAR-missing comletely at random: független mind a megfigyelt adatoktól, mind a többi hiányzótól. Random részhalmaza az adatoknak. MAR lehet, hogy függ a csoorttól, hogy hiányzik-e. Mit tegyünk a hiányzó adatokkal?. Objektum törlése (deletion): legjobb megoldás, ha kevesebb, mint 5% hiányzik és MCAR Információ vesztés listwise deletion esetén. Ha az analízis áronkénti (airwise) asszociációkon alaul (kovariancia, korreláció), akkor airwise deletion. Csak akkor töröljük, ha éen azokkal a változókkal dolgozunk, amelyiknél hiányzik a megfigyelés. Imutáció Helyettesítés becsléssel. Módszerek:. átlaggal (változó értékeiből számolt\na) A varianciát alulbecsüli.. Regressziós modellel. Más változókkal becsüljük, l. a legjobban korrelált változót vagy változókat választjuk rediktornak.) 3. Hot-deck: Hasonló objektum értékével helyettesítjük. Problémák: függetlenség sérül; varianciát alulbecsli. 47

26 Maximum likelihood (ML) és EM becslés ML : araméter becslés a megfigyelt, nem teljes adatokból, majd a modellből becsüljük a hiányzó adatokat. Felhasználja a megfigyelt adatok eloszlását és a hiányzó adatok mintázatát. Iteratív imutáció + ML : Exectation Maximization ML araméter becslés hiányzó adatok ML araméterbecslés hiányzó adatok..., amíg nem konvergál. ML és EM feltétele a MAR. 48

27 Többváltozós adatelemzés SPSS-sel Előkészületek: Adatok megjelenítése: SPSS Grahics SPSS Frequency Hiányzó adatok elemzése (Missing data analysis) : Ellenőrizzük, hogy létezik-e mintázat (randomnak kell lennie) Kategoriális változó esetén: Ha Missing < 5%, List-wise otion Ha >=5%, akkor a hiányzó értékek kerüljenek egy új kategóriába Mért változó esetén: Ha Missing < 5%, List-wise otion 5% és 5% között : Transform>Relace Missing Value. (5%-nál kevesebb adat behelyettesítésének nincs túl komoly hatása Ha > 5%, akkor töröljük a változót, vagy a megfigyelési egységet (ismételt mérések esetén) Kiugró értékek ellenőrzése (Outlier-ek) : (Általában a statisztikai eljárások érzékenyek az outlier-ekre.) 49

28 Egyváltozós eset: boxlot Többváltozós eset: Mahalanobis távolság (Khi-négyzet statisztika), egy ont akkor outlier, ha a -érték <.00. o Az eset azonosítója (dummy variable) : Deendent, a többi változó: Indeendent o Save>Mahalanobis Kezelés: Töröljük az esetet Közöljünk két elemzést (egyet az outlier-rel, egyet edig nélküle) Normalitás: Egyváltozós normalitás tesztek: Q-Q lot Skewness és Kurtosis Tesztek Többváltozós normalitás tesztelése: A szórásdiagrammoknak ellitikusaknak kell lennie Minden változónak normálisnak kell lennie Linearitás: A linearitás ellenőrzése Reziduális lot regresszió esetén Szórásdiagrammok 50

29 Homoscedasticity: a kovariancia mátrixoknak a csoortokban meg kell egyeznie: Tesztelése: Box s M test Érzékeny a normalitásra Levene teszt: a csoort varianciák egyezőségének vizsgálata. Nem annyira érzékeny a normalitásra 5

30 Emlékeztető: ANOVA Az egyfaktoros ANOVA a o. átlagok egyezőségét teszteli Feltételek: független megfigyelések; normalitás; varianciák homogenitása Két faktoros ANOVA 3 hiotézis teszttel szimultán: Interakció a két faktor között A két faktor hatásának tesztelése Emlékeztető: ANCOVA A függő változó értéke folytonos független változótól (kovariáns) is függhet. Kovariánsok hatásának figyelembe vétele illetve becslése. A reguláris ANOVA feltételein túl követelmény még: Lineáris kacsolat a függő változó és a kovariánsok között MANOVA Tulajdonságok: Hasonló az ANOVÁ-hoz Több függő változó A függő változók korreláltak és a lineáris kombinációnak értelme van. Azt teszteli, hogy k oulációban a független változók egy lineáris kombinációjának átlagai különböznek-e. Alaötlet: találjunk egy olyan lineáris kombinációt, amely otimálisan szearálja a csoortokat, azaz olyat amely 5

31 maximalizálja a hiba (within grou) variancia/kovariancia mátrix és a hatás (between grou) variancia/kovariancia mátrix hányadosát. (Ez ugyanaz, mint amit a diszkriminancia elemzésnél használunk.) Ennek a kombinációnak a standardizált együtthatói megmondják, hogy melyik változó milyen súllyal szereel a szearálásban. Előnyök: Annak az esélye, hogy különbségeket találunk a csoortok között, nagyobb, ahhoz kéest, mintha minden változóra egyenként ANOVÁ-t csinálnánk. Nem inflálódik az elsőfajú hiba. Több ANOVA elvégzése nem veszi figyelembe azt, hogy a független változók korreláltak. Hátrányok: Bonyolultabb, Az ANOVA gyakran nagyobb hatóerejű. Sokkal komlikáltabb kísérleti elrendezést igényel. Kétségek merülhetnek fel, hogy valójában mely független változók mely függő változók értékét befolyásolják. Minden lusz függő változó szabadsági fokkal kevesebbet jelent. Feltételek: Független minták, Többváltozós normális eloszlás a csortokban A kovariancia mátrix homogenitása 53

32 Lineáris kacsolat a független változók között A MANOVA elvégzésének léései: Feltételek ellenőrzése Ha a MANOVA nem szignifikáns, sto Ha a MANOVA szignifikáns, egyváltozós ANOVÁk Ha az egyváltozós ANOVA szignifikáns, Post Hoc tesztek. Ha igaz a homoscedasticity, Wilks Lambda, ha nem Pillai s Trace. Általában mind a 4 statisztikának hasonlónak kell lennie. A MANOVA algoritmusa:. Az ANOVA négyzetösszegei helyett sums-of-squares-andcross-roducts (SSCP) mátrixok. Egy a hatásnak (between grous) megfelelő (H), egy edig a reziduális (within grous): E, és egy a teljesnek megfelelő (T).. Kiszámítjuk a HE - szorzatot (egyváltozós esetben ez az F érték). 3. Kiszámítjuk a HE - sektrál felbontását: sajátértékek, sajátvektorok. A s.é.-kek azt mutatják meg, hogy betweengrou varianciából a sajátvektorok vagy lineáris kombinációk mennyit magyaráznak. A s.v.-ok tartalmazzák a lineáris kombinációk együtthatóit. 4. Az a lineáris kombináció, amelyikhez a legnagyobb s.é. tartozik maximalizálja a between-grou/within-grou variancia hányadost. H 0 : a csoort centroidok megegyeznek. 54

33 Ez tesztelhető valamelyik variancia mérték segítségével (nyom, determináns:általánosított variancia). Wilk s lambda: E / T. A teljes variancia hányad része a reziduális. Minél kisebb, annál nagyobb a csoortok köztötti különbségek. Hotelling-Lawley trace: H / E. Ez ugyanaz, mint a HE - mátrix nyoma (sajátértékek összege). Nagyobb értékek nagyobb különbségeket indikálnak a csoort centroidok között. Pillai trace: A HT - nyoma, vagyis a between grous variancia. Roy s largest root: a HE - legnagyobb s.é.-e, vagyis ahhoz a lineáris kombinációhoz tartozó s.é. amely a between grous variancia-kovarianca legnagyobb részét magyarázza. Ezeknek a statisztikáknak az eloszlása nem teljesen ismert, közelítő F értékekké konvertálják ezeket. Két csoort esetén a Wilk s lambda, a Hotteling és Pillai féle érték megegyezik és megegyezik a Hotteling féle T statisztikával, ami a t-róba többváltozós kiterjesztése. Általában hasonló eredményeket rodukálnak több csoort esetén is. A Pillai trace a legrobosztusabb teszt. 55

34 MANCOVA Cél: Csoortok közötti különbség tesztelése független változók egy lineáris kombinációja alaján egy kovariáns figyelembe vételével. Példa: 3 területen élő őzek összehasonlítása a kor kovariáns figyelembe vételével. Reeated Measure Analysis Cél: csoortok közötti különbségek tesztelése, ha a megfigyelési egységeken többször mérünk. Feltétel: Független megfigyelések!! Helyette: Kevert modell 56

35 Diszkriminancia analízis Cél: egy olyan függvény létrehozása, amely alaján az egyedek két vagy több csoortba sorolhatók (a függvény értéke lényegesen változik csoortról csoortra). Később a függvényt új egyedek besorolására lehessen használni. l. verebek. A testméretek alaján besorolhatók-e a verebek a túlélők ill. nem túlélők közé (Mire emlékeztet ez a kérdés?!!): Lineáris diszkriminancia függvény: Z = ax + ax a X Ha Z értéke jelentősen változik csoortról csoortra, akkor a csoortok jól szearálhatók. Több függvény is konstruálható. A függvény úgy vetíti le a csoortokat egy alacsonyabb dimenziós térbe, hogy azok eloszlásai a legkisebb mértékben fedjék át egymást. A MANOVA inverze. A MANOVA ugyanezt a függvényt használja. Kétféle cél:. Prediktív diszkriminancia analízis (generáljunk egy szabályt, amely alaján csoortokba sorolhatunk).. Leíró analízis: a függő változó és a független változók kacsolatát vizsgáljuk. Hogyan működik?. Feltételezzük, hogy a célouláció egymást kizáró rész oulációkból áll.. Feltételezzük, hogy a független változóink többváltozós normális elsozlást követnek 57

36 3. Megkeressük azt a lineáris kombinációt, amely a legjobban szearálja a csoortokat. 4. Ha k csoortunk van, akkor k- diszkriminancia függvényt készítünk. 5. Minden függvényre kiszámítjuk a diszkriminancia szkórokat. 6. Ezeket a szkórokat használjuk a klasszifikáláshoz. Klasszifikálási módok: ML ahhoz a csoorthoz sorolja be, amelynek legnagyobb a valószínűsége. Fisher (lineáris) klasszifikáló függvény: abba a csoortba sorolja be, amely esetén a csoorthoz tartozó függvény szkórja a legnagyobb. Diszkriminálás Mahalanobis távolságokkal: Kiszámítjuk az egyedek Mahalanobis távolságát a csoort centroidoktól, és abba soroljuk be, amelyhez a legközelebb van. Megjegyzés: az SPSS a Maximum likelihood módszert használja. Logisztikus regresszió vagy diszkriminancia analízis? Ha a magyarázó változók normális eloszlásúak, akkor a DA jobb. Ha kategoriális változóink is vannak, akkor a DA akkor rosszabb, ha a kategóriák száma nagyon kicsi (, 3). Ezekben az esetekben a LR eredménye hasonló a DA-éhoz, legfeljebb egy kicsit rosszabb (ha a mintaelemszám aránylag kicsi). Ha a DA feltételei nem teljesülnek, mindenkéen a LR-t kell használni. Az LR nem eloszlás függő. 58

37 Őzes élda oututja: terület Árádhalom Babat Pitvaros Pooled within-grous Log Determinants Log Rank Determinant The ranks and natural logarithms of determinants rinted are those of the grou covariance matrices. Általánosított variancia logaritmusa. Ha közel egyenlőek, akkor valószínűleg nincs nagy gond. Test Results Box's M F Arox. df df Sig Tests null hyothesis of equal oulation covariance matrices. Function Eigenvalues Canonical Eigenvalue % of Variance Cumulative % Correlation.866 a a a. First canonical discriminant functions were used in the analysis. A HE - mátrix s.é.-ei és a megfelelő variancia hányadok. A Canonical correlation egy asszociációs mérték a diszkriminancia szkórok és a csoortok között. Wilks' Lambda Test of Function(s) through Wilks' Lambda Chi-square df Sig

38 A Wilks Lambda a varianciából a csoortok különbözősége által nem magyarázott hányad. A szignifikancia szint a diszkriminancia fv. szignifikanciáját mutatja. Z Canonical Discriminant Function Coefficients Function teljes hossz orrtól farok végéig marmagasság köröm végéig szív súlya jobb vese súlya ln_vesezsir (Constant) Unstandardized coefficients = 0.07 testh marm szivs 0.08 veses ln_ ve Ezekkel a fv.ekkel tudunk szkórokat számolni minden esethez. Functions at Grou Centroids terület Árádhalom Babat Pitvaros Function Unstandardized canonical discriminant functions evaluated at grou means A fv értékek a csoort centroidok esetén. Standardized Canonical Discriminant Function Coefficients teljes hossz orrtól farok végéig marmagasság köröm végéig szív súlya jobb vese súlya ln_vesezsir Function

39 Az egyes változók fontosságát? mutatják az egyes diszkriminancia függvényekben. (Nagyon korrelált változók esetén nehéz interretálni.) szív súlya teljes hossz orrtól farok végéig ln_vesezsir jobb vese súlya marmagasság köröm végéig Structure Matrix Function.753*.503.7*.50.58* * * Pooled within-grous correlations between discriminating variables and standardized canonical discriminant functions Variables ordered by absolute size of correlation within function. *. Largest absolute correlation between each variable and any discriminant function A diszkriminancia függvények és az eredeti változók korrelációi. Az első függvény a szívsúllyal, a teljes hosszal és a vesezsírral korrelál, míg a másik a jobb vese súlyával és a marmagassággal. Classification Function Coefficients terület Árádhalom Babat Pitvaros teljes hossz orrtól farok végéig marmagasság köröm végéig szív súlya jobb vese súlya ln_vesezsir (Constant) Fisher's linear discriminant functions A Fisher féle fv-ek. Amelyik csoort esetén a legnagyobb az értéke, abba sorolja be. 6

40 Original Count % terület Árádhalom Babat Pitvaros Árádhalom Babat Pitvaros Classification Results a Predicted Grou Membershi a. 76.7% of original groued cases correctly classified. Árádhalom Babat Pitvaros Total Canonical Discriminant Functions 4 terület Árádhalom Babat Pitvaros Grou Centroid Function 0 Babat Pitvaros Árádhalom Function 6

41 63

42 Adatredukció (Ordináció) Főkomonens analízis (PCA) Felfedező adatelemzésben használatos. Adathalmaz kényelmesebb és informatívabb ábrázolása, dimenziószám csökkentése, fontos változók beazonosítása. Cél: Van változónk: X, X,..., X és keressük ezeknek olyan Z, Z,..., Z kombinációit (főkomonensek), amelyek nem korreláltak. A korrelálatlanság azt jelenti, hogy az új változók az adatok különböző dimenzióit mérik. ( Z ) ( Z )... ( Z ) σ σ σ Remény: a legtöbb főkomonens szórása olyan kicsi, hogy elhanyagolhatók, így az adatokban meglévő változatosság néhány főkomonenssel jól leírható. Ha az eredeti változók egyáltalán nem korreláltak, az analízis semmit nem csinál. Legjobb eredmény: nagyon korrelált változók esetén. Adatok: Egyed X X... X x x... x x x... x M n x n x n x n 64

43 A főkomonensek: Zi = aix + aix aix a + a a = i i i ( ) ( ) ( ) és σ Z σ Z... σ Z. A főkomonensek varianciái az adatok kovariancia mátrixának sajátértékei (λ i ), az együtthatói edig a megfelelő sajátértékhez tartozó sajátvektor együtthatói. Ha a kovarianciamátrix: c c... c c c... c C =, M M M c c c akkor λ + λ λ = c + c c = σ ( X) + σ ( X ) σ ( X ) Céls zerű az adatokat standardizálni az analízis előtt. Ekkor a kovariancia mátrix megegyezik korrelációs mátrixszal. Feltételek: Normalitás nem feltétel, de a nagyon ferde eloszlás ronthatja az eredményt. A normalitás csak tesztek esetén szükséges. Linearitás. Ne legyenek outlierek. 65

44 Példa: Őzek: teljes súly teljes hossz orrtól farok végéig marmagasság köröm végéig törzs hossza ocak körkörös mérete hátsó láb hossza körömtől gerincig szív súlya lé súlya jobb vese súlya recés gyomor súlya kaja nélkül Communalities Initial Extraction Extraction Method: Princial Comonent Analysis. Azt mutatja meg, hogy a főkomonensek mennyit magyaráznak az egyes változókból. Az Initial azt jelenti, hogy az összes főkomonens együtt mennyit magyaráz, az Extraction edig azt, hogy az extraktolt főkomonensek mennyit. (A főkomonensek (magyarázó változók) és a megfelelő változó többszörös korrelációs együtthatójának négyzete.) Total Variance Exlained Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums Comonent Total % of Variance Cumulative % Total % of Variance Cumulative % Total % of Extraction Method: Princial Comonent Analysis. A korrelációs/kovariancia mátrix s.é.-ei, és a megfelelő variancia hányadok. 66

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok).

Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Többváltozós problémák Több mint egy változót jegyzünk fel a megfigyelési egységekről (objektumok). Volt: Több magyarázó változó: többszörös regresszió, több faktoros ANOVA, ANCOVA. Most: több független

Részletesebben

Standardizálás, transzformációk

Standardizálás, transzformációk Standardizálás, transzformációk A transzformációk ugynúgy mennek, mint egyváltozós esetben. Itt még fontosabbak a linearitás miatt. Standardizálás átskálázás. Centrálás: kivonjuk minden változó átlagát,

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Dávid Nikolett Szeged 2011 1 1. Helyzetfelmérés Adott egy kölcsön.txt nevű adatfájl, amely információkkal rendelkezik az ügyfelek életkoráról, családi állapotáról, munkaviszonyáról,

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41

Minden az adatról. Csima Judit. 2015. február 11. BME, VIK, Csima Judit Minden az adatról 1 / 41 Minden az adatról Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2015. február 11. Csima Judit Minden az adatról 1 / 41 Adat: alapfogalmak Adathalmaz elvileg bármi, ami információt

Részletesebben

Esetelemzések az SPSS használatával

Esetelemzések az SPSS használatával Esetelemzések az SPSS használatával 1. Tekintsük az spearman.sav állományt, amely egy harminc tehenet számláló állomány etetés- és fejéskori nyugtalansági sorrendjét tartalmazza. Vizsgáljuk meg, hogy van-e

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás A feladatok megoldásához használandó adatállományok: potzh és potolando (weboldalon találhatók) Az állományok kiterjesztése sas7bdat,

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Khi-négyzet eloszlás. Statisztika II., 3. alkalom

Khi-négyzet eloszlás. Statisztika II., 3. alkalom Khi-négyzet eloszlás Statisztika II., 3. alkalom A khi négyzet eloszlást (Pearson) leggyakrabban kategorikus adatok elemzésére használjuk. N darab standard normális eloszlású változó négyzetes összegeként

Részletesebben

A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel

A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel A magyarországi nonprofit szektorban dolgozók motivációjára káros hatások értékelésének elemzése többváltozós statisztikai módszerekkel Kovács Máté PhD hallgató (komoaek.pte) Pécsi Tudományegyetem Közgazdaságtudományi

Részletesebben

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM.

STATISZTIKA. András hármas. Éva ötös. Nóri négyes. 5 4,5 4 3,5 3 2,5 2 1,5 ANNA BÉLA CILI 0,5 MAGY. MAT. TÖRT. KÉM. STATISZTIKA 5 4,5 4 3,5 3 2,5 2 1,5 1 0,5 0 MAGY. MAT. TÖRT. KÉM. ANNA BÉLA CILI András hármas. Béla Az átlag 3,5! kettes. Éva ötös. Nóri négyes. 1 mérés: dolgokhoz valamely szabály alapján szám rendelése

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Esetelemzés az SPSS használatával

Esetelemzés az SPSS használatával Esetelemzés az SPSS használatával A gepj.sav fileban négy különböző típusú, összesen 80 db gépkocsi üzemanyag fogyasztási adatai találhatók. Vizsgálja meg, hogy befolyásolja-e az üzemanyag fogyasztás mértékét

Részletesebben

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások

Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Dr. Szőke Szilvia Dr. Balogh Péter: Nemparaméteres eljárások Bevezetés A magas mérési szintű változók adataiból számolhatunk átlagot, szórást. Fontos módszerek alapulnak ezeknek a származtatott paramétereknek

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19.

Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Ismételt méréses multifaktoriális varianciaanaĺızis (repeated measures MANOVA) 2012. szeptember 19. Varianciaanaĺızis Adott egy parametrikus függő változó és egy vagy több kategoriális független változó.

Részletesebben

Sztochasztikus kapcsolatok

Sztochasztikus kapcsolatok Sztochasztikus kapcsolatok Petrovics Petra PhD Hallgató Ismérvek közötti kapcsolat (1) Függvényszerű az egyik ismérv szerinti hovatartozás egyértelműen meghatározza a másik ismérv szerinti hovatartozást.

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák

Statisztikai hipotézisvizsgálatok. Paraméteres statisztikai próbák Statisztikai hipotézisvizsgálatok Paraméteres statisztikai próbák 1. Magyarországon a lakosság élelmiszerre fordított kiadásainak 2000-ben átlagosan 140 ezer Ft/fő volt. Egy kérdőíves felmérés során Veszprém

Részletesebben

Több laboratórium összehasonlítása, körmérés

Több laboratórium összehasonlítása, körmérés Több oratórium összehasonlítása, körmérés colorative test, round robin a rendszeres hibák ellenőrzése, számszerűsítése Statistical Manual of AOAC, W. J. Youden: Statistical Techniques for Colorative Tests,

Részletesebben

Variancia-analízis (folytatás)

Variancia-analízis (folytatás) Variancia-analízis (folytatás) 7. elıadás (13-14. lecke) Egytényezıs VA blokk-képzés nélkül és blokk-képzéssel 13. lecke Egytényezıs variancia-analízis blokkképzés nélkül Az átlagok páronkénti összehasonlítása(1)

Részletesebben

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015

A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015 A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Elméleti összefoglalók dr. Kovács Péter

Elméleti összefoglalók dr. Kovács Péter Elméleti összefoglalók dr. Kovács Péter 1. Adatállományok létrehozása, kezelése... 2 2. Leíró statisztikai eljárások... 3 3. Várható értékek (átlagok) vizsgálatára irányuló próbák... 5 4. Eloszlások vizsgálata...

Részletesebben

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005.

Skalárszorzat, norma, szög, távolság. Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. 1 Diszkrét matematika II., 4. el adás Skalárszorzat, norma, szög, távolság Dr. Takách Géza NyME FMK Informatikai Intézet takach@inf.nyme.hu http://inf.nyme.hu/ takach/ 2005. március 1 A téma jelent sége

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

Túlélés analízis. Probléma:

Túlélés analízis. Probléma: 1 Probléma: Túlélés analízis - Túlélési idő vizsgálata speciális vizsgálati módszereket igényel (pl. két csoport között az idők átlagait nem lehet direkt módon összehasonlítani) - A túlélési idő nem normális

Részletesebben

VARIANCIAANALÍZIS (szóráselemzés, ANOVA)

VARIANCIAANALÍZIS (szóráselemzés, ANOVA) VARIANCIAANAÍZIS (szóráselemzés, ANOVA) Varancaanalízs. Varancaanalízs (szóráselemzés, ANOVA) Adott: egy vagy több tetszőleges skálájú független változó és egy legalább ntervallum skálájú függő változó.

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Az OECD PISA adatbázis elemzése

Az OECD PISA adatbázis elemzése Az OECD PISA adatbázis elemzése A program Emlékeztető a múlt hétről A PISA val kapcsolatos honlapok tartalma és az online elérhető dokumentáció A PISA adatbázisának felépítése A PISA makróinak használata,

Részletesebben

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák

Elliptikus eloszlások, kopuláik. 7. előadás, 2015. március 25. Elliptikusság tesztelése. Arkhimédeszi kopulák Elliptiks eloszlások, kopláik 7. előadás, 215. márcis 25. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettdományi Kar Eötös Loránd Tdományegyetem Áringadozások előadás Sűrűségfüggényük

Részletesebben

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet

Biostatisztika Bevezetés. Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Biostatisztika Bevezetés Boda Krisztina előadása alapján ma Bari Ferenc SZTE ÁOK Orvosi Fizikai és Orvosi Informatikai Intézet Az orvosi, biológiai kutatások egyik jellemzője, hogy a vizsgálatok eredményeként

Részletesebben

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem

13. előadás. Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor. Széchenyi István Egyetem 13. előadás Matlab 7. (Statisztika, regresszió, mérési adatok feldolgozása) Dr. Szörényi Miklós, Dr. Kallós Gábor 2013 2014 1 Tartalom Statisztikai alapfogalmak Populáció, hisztogram, átlag, medián, szórás,

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Centura Szövegértés Teszt

Centura Szövegértés Teszt Centura Szövegértés Teszt Megbízhatósági vizsgálata Tesztfejlesztők: Megbízhatósági vizsgálatot végezte: Copyright tulajdonos: Bóka Ferenc, Németh Bernadett, Selmeci Gábor Bodor Andrea Centura Kft. Dátum:

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Számítási feladatok a Számítógépi geometria órához

Számítási feladatok a Számítógépi geometria órához Számítási feladatok a Számítógépi geometria órához Kovács Zoltán Copyright c 2012 Last Revision Date: 2012. október 15. kovacsz@nyf.hu Technikai útmutató a jegyzet használatához A jegyzet képernyőbarát

Részletesebben

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x.

1. (Sugár Szarvas fgy., 186. o. S13. feladat) Egy antikvárium könyvaukcióján árverésre került. = x = 6, y = 12. s y y = 1.8s x. . Sugár Szarvas fgy., 86. o. S3. feladat Egy antikvárium könyvaukcióján árverésre került 9 könyv licitálási adatai alapján vizsgáljuk a könyvek kikiáltási és ún. leütési ára ezerft közötti sztochasztikus

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán

Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán Adatelemzési eljárások az idegrendszer kutatásban Somogyvári Zoltán MTA KFKI Részecske és Magfizikai Intézet, Biofizikai osztály Az egy adatsorra (idősorra) is alkalmazható módszerek Példa: Az epileptikus

Részletesebben

A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében

A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében A telefonnal való ellátottság kapcsolata a rádió és televízió műsorszórás használatával a 14 éves és idősebb lakosság körében Kiegészítő elemzés A rádió és televízió műsorszórás használatára a 14 éves

Részletesebben

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat

Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Az adatmátrix, az adatok átalakítása

Az adatmátrix, az adatok átalakítása 2 Az adatmátrix, az adatok átalakítása (Az elsõ bátortalan lépések... de még sok minden rejtve marad) A mintavételezés során, mint láttuk, a mintavételi egységeket változók segítségével írjuk le. A kapott

Részletesebben

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika

Bevezetés. 1. előadás, 2015. február 11. Módszerek. Tematika Bevezetés 1. előadás, 2015. február 11. Zempléni András Valószínűségelméleti és Statisztika Tanszék Természettudományi Kar Eötvös Loránd Tudományegyetem Áringadozások előadás Heti 2 óra előadás + 2 óra

Részletesebben

Számítógépes geometria (mester kurzus)

Számítógépes geometria (mester kurzus) 2010 sz, Debreceni Egyetem Csuklós szerkezetek animációja (Kép 1985-b l: Tony de Peltrie) Csontváz-modellek Csuklós szerkezet (robotkar) A robotkar részei: csuklók (joints) rotációs prizmatikus (transzlációs)

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projet eretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszéén az ELTE Közgazdaságtudományi

Részletesebben

Bemenet modellezése II.

Bemenet modellezése II. Bemenet modellezése II. Vidács Attila 2005. november 3. Hálózati szimulációs technikák, 2005/11/3 1 Kiszolgálási id k modellezése Feladat: Egy bemeneti modell felállítása egy egy kiszolgálós sorbanállási

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Pedagógus 2010 kutatás Az óvodapedagógus fıkérdıívek elemzése

Pedagógus 2010 kutatás Az óvodapedagógus fıkérdıívek elemzése Pedagógus 2010 kutatás Az óvodapedagógus fıkérdıívek elemzése Írta: Gáti Annamária 2010. április Tartalom 1. Demográfia... 3 2. A válaszadó óvodapedagógusok iskolai végzettsége... 3 3. Az óvodapedagógusi

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése

Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık

Részletesebben

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter

Statisztikai módszerek alkalmazása az orvostudományban. Szentesi Péter Statisztikai módszerek alkalmazása az orvostudományban Szentesi Péter Az orvosi munkahipotézis ellenőrzése statisztikai módszerekkel munkahipotézis mérlegelés differenciáldiagnosztika mi lehet ez a más

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Gazdasági matematika II. vizsgadolgozat, megoldással,

Gazdasági matematika II. vizsgadolgozat, megoldással, Gazdasági matematika II. vizsgadolgozat, megoldással, levelező képzés Definiálja az alábbi fogalmakat! 1. Kvadratikus mátrix invertálhatósága és inverze. (4 pont) Egy A kvadratikus mátrixot invertálhatónak

Részletesebben

A statisztika részei. Példa:

A statisztika részei. Példa: STATISZTIKA Miért tauljuk statisztikát? Mire haszálhatjuk? Szakirodalom értő és kritikus olvasásához Mit állít egyáltalá a cikk? Korrektek-e a megállaítások? Vizsgálatok (kísérletek és felmérések) tervezéséhez,

Részletesebben

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma)

Sorozatok I. Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok I. DEFINÍCIÓ: (Számsorozat) A számsorozat olyan függvény, amelynek értelmezési tartománya a pozitív egész számok halmaza, értékkészlete a valós számok egy részhalmaza. Jelölés: (a n ), {a n }.

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

statisztikai menürendszere Dr. Vargha András 2007

statisztikai menürendszere Dr. Vargha András 2007 A statisztikai menürendszere Dr. Vargha András 2007 2 tartalomjegyzék 1. Alapok (egymintás elemzések Alapstatisztikák Részletesebb statisztikák számítása Gyakorisági eloszlás, hisztogram készítése Középértékekre

Részletesebben

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József

Matematika III. 8. A szórás és a szóródás egyéb mérőszámai Prof. Dr. Závoti, József Matematika III. 8. A szórás és a szóródás egyéb Prof. Dr. Závoti, József Matematika III. 8. : A szórás és a szóródás egyéb Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

STATISZTIKA PRÓBAZH 2005

STATISZTIKA PRÓBAZH 2005 STATISZTIKA PRÓBAZH 2005 1. FELADATSOR: számítógépes feladatok (még bővülni fog számítógép nélkül megoldandó feladatokkal is) Használjuk a Dislexia Excel fájlt (internet: http:// starts.ac.uk)! 1.) Hasonlítsuk

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI

Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése. Rezsabek Tamás GSZDI Magyarországon személysérüléses közúti közlekedési balesetek okozóik és abból alkoholos állapotban lévők szerinti elemzése Rezsabek Tamás GSZDI Anyag és módszer Központi Statisztikai Hivatalának adatai

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

SZENT ISTVÁN EGYETEM. Gödöllő. Gazdálkodás és Szervezéstudományok Doktori Iskola

SZENT ISTVÁN EGYETEM. Gödöllő. Gazdálkodás és Szervezéstudományok Doktori Iskola SZENT ISTVÁN EGYETEM Gödöllő Gazdálkodás és Szervezéstudományok Doktori Iskola A MAGYARORSZÁGI ZÖLDSÉGÁGAZAT HELYZETÉNEK ÉRTÉKELÉSE ÉS ÖKONÓMIAI ELEMZÉSE DOKTORI (PhD) ÉRTEKEZÉS TÉZISEI Készítette: Bene

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Vargha András Károli Gáspár Református Egyetem Budapest

Vargha András Károli Gáspár Református Egyetem Budapest Vargha András Károli Gáspár Református Egyetem Budapest Kötelező irodalom a kurzushoz Vargha András: Matematikai statisztika pszichológiai, nyelvészeti és biológiai alkalmazásokkal (2. kiadás). Pólya Kiadó,

Részletesebben

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam

Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel

Részletesebben

Statisztikai szoftverek esszé

Statisztikai szoftverek esszé Statisztikai szoftverek esszé Csillag Renáta 2011. Helyzetfelmérés Egy internetszolgáltató egy havi adatforgalmát vizsgáltam. A táblázatok az előfizetők letöltési forgalmát tartalmazzák, napi bontásban,

Részletesebben

Érdekes informatika feladatok

Érdekes informatika feladatok A keres,kkel és adatbázissal ellátott lengyel honlap számos díjat kapott: Spirit of Delphi '98, Delphi Community Award, Poland on the Internet, Golden Bagel Award stb. Az itt megtalálható komponenseket

Részletesebben

ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN

ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN DOI: 10.12663/PsyHung.1.2013.1.2.4 ROBUSZTUS LINEÁRIS REGRESSZIÓ ALKALMAZÁSA PSZICHOLÓGIAI ELEMZÉSEKBEN Takács Szabolcs 1 Smohai Máté 2 1 Károli Gáspár Református Egyetem és Budapest Főváros Kormányhivatala

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program

Regresszió számítás. Tartalomjegyzék: GeoEasy V2.05+ Geodéziai Kommunikációs Program Regresszió számítás GeoEasy V2.05+ Geodéziai Kommunikációs Program DigiKom Kft. 2006-2010 Tartalomjegyzék: Egyenes x változik Egyenes y változik Egyenes y és x változik Kör Sík z változik Sík y, x és z

Részletesebben

Kérdıívek, tesztek I. Kérdıívek

Kérdıívek, tesztek I. Kérdıívek Kérdıívek, tesztek I. Kérdıívek Kérdıíves vizsgálat céljára alkalmas témák A kérdıíves vizsgálatok alkalmasak leíró, magyarázó és felderítı célokra. Leginkább olyan kutatásban használják, amelyekben az

Részletesebben

A hiperbolikus síkgeometria Poincaré-féle körmodellje

A hiperbolikus síkgeometria Poincaré-féle körmodellje A hiperbolikus síkgeometria Poincaré-féle körmodellje Ha egy aiómarendszerre modellt adunk, az azt jelenti, hogy egy matematikai rendszerben interpretáljuk az aiómarendszer alapfogalmait és az aiómák a

Részletesebben

Normál eloszlás. Gyakori statisztikák

Normál eloszlás. Gyakori statisztikák Normál eloszlás Átlag jól jellemzi az adott populációt folytonos eloszlás (pl. lottó minden szám egyszer fordul elő) kétkúpú eloszlás (IQ mindenki vagy zseni vagy félhülye, átlag viszont azt mutatja,

Részletesebben

15. LINEÁRIS EGYENLETRENDSZEREK

15. LINEÁRIS EGYENLETRENDSZEREK 15 LINEÁRIS EGYENLETRENDSZEREK 151 Lineáris egyenletrendszer, Gauss elimináció 1 Definíció Lineáris egyenletrendszernek nevezzük az (1) a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a

Részletesebben

A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI MA. T.P.Lenke

A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI MA. T.P.Lenke A KUTATÁSMÓDSZERTAN MATEMATIKAI ALAPJAI MA T.P.Lenke 2013.10.25. 2 Szignifikáns különbség Annak bizonyítása, hogy a vizsgálat során megfigyelt különbség egy általunk meghatározott valószínűségi szinten

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készül a TÁMOP-4..2-08/2/A/KMR-2009-004pályázai projek kereében Taralomfejleszés az ELTE TáK Közgazdaságudományi Tanszékén az ELTE Közgazdaságudományi Tanszék, az

Részletesebben

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja

karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus egyenlet Ortogonális mátrixok. Kvadratikus alakok főtengelytranszformációja 1.Mátrixok hasonlósága, karakterisztikus mátrix, karakterisztikus

Részletesebben

és élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá-

és élelmiszer-ipari termékek hozhatók forgalomba, amelyeket a vonatkozó jogszabá- 152 - - - - - - Az öko, a bio vagy az organikus kifejezések használata még napjainkban sem egységes, miután azok megjelenési formája a mindennapi szóhasználatban országon- A német, svéd, spanyol és dán

Részletesebben