DÖNTŐ MEGOLDÁSOK 5. OSZTÁLY

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "DÖNTŐ MEGOLDÁSOK 5. OSZTÁLY"

Átírás

1 5. OSZTÁLY 1.) A páratlan számjegyek száma 5, közülük 1 db, illetve 3 db lehet a háromjegyű számunkban. Ha mindhárom számjegy páratlan, akkor az 5 lehetőségből választhatunk mindhárom helyiértékre. Így ez az eset , azaz 125 szám. Ha csak egy páratlan számjegyet használok fel, akkor a másik két helyiértékre páros számjegy kerül. Ezek száma 5. Figyelni kell azonban arra, ha páros számjegy kerül a százas helyiértékre, akkor ott nem állhat 0. Tehát ha a százasok helyén páratlan számjegy áll, akkor számot kapunk, ha páros számjegy áll, akkor eset lehetséges. Ezek szerint 350 szám van, ami a feltételeknek megfelel. 2.) Az 1, 2, 3,..., 10, 11 számok összege 66. Igaza van Antinak, ugyanis ahhoz, hogy a feltétel teljesüljön, az összegnek 7-tel oszthatónak kell lenni. A 66 pedig nem osztható 7-tel. 3.) 15 percig futnak egyfolytában és ezalatt Pali 5 kört fut, Béla 4-et és Sanyi 3-at. 3 perc = 180 másodperc, 3 perc = 225 másodperc és 5 perc = 300 másodperc. A 180, a 225 és a 300 legkisebb közös többszöröse másodperc = 15 perc. 4.) Az I. négyzet oldala: 4 m, a II. négyzet oldala: 6 m, a III. négyzet oldala 10 m, a IV. négyzet oldala 16 m. a) Összesen 114 m hosszú sövényt kell telepíteni. b) teljes terület a részek összege: 408 m 2.

2 6. OSZTÁLY 1.) Két esetben lehet a három szám összege páros: vagy mindhárom páros, vagy kettő páratlan, egy páros. Három páros számot az első 30-nál nem nagyobb pozitív egész közt található 15 páros szám közül = 2730 módon választhatnánk ki, ha a sorrend is számítana. E feladatban ez lényegtelen, nem jelent újabb lehetőséget a felcseréléssel kapott szám. A három szám 6 féle sorrendbe rendezhető, ezért a lehetséges esetek száma a 2730 hatoda (455) lesz. Két páratlan számot = 210 féleképpen választhatnánk ki, de a sorrend itt sem számít, ezért 105 a lehetőségek száma, ezekhez 15 páros szám kerülhet, így = 1575 a lehetséges esetek száma. Az összes lehetőség = ) Ha nincs ott a 3 fiú, akkor pontosan kétszer annyi leány van jelen, mint fiú, vagyis 2. (x 3) = x + 6, amiből x = 12. a) A 12 fiúból hiányzott 3, így jelen volt 9, mivel a lányok ekkor pontosan kétszer annyian voltak, mint a fiúk, így ők 18-an voltak. Ezen a próbán összesen = 27- en vettek részt. b) A csoport eredeti létszáma = 30. c) A fiúk száma 12. d) A lányok száma 18. e) Ellenőrzéssel meggyőződhetünk a megoldás helyességéről. 3.) Próbáljuk meg kifizetni 1-től 255-ig az egyes összegeket növekvő sorrendben! Mivel 1 -t is ki lehet fizetni, ezért az egyik borítékban 1 van. Mivel a borítékok tartalma különböző, ezért 2 -t két egyessel nem, csak egy 2 -s borítékkal tudunk kifizetni. Ezzel meg is van a 3 -s összeg. A következő boríték 4 -t tartalmaz, mert az előző kettő kevés lenne, s még egy 2 -s boríték nem lehet. Ezzel a három borítékkal 5, 6, 7 - t is ki tudunk számolni, a következő boríték 8 -t tartalmaz, mivel az előzőek kevesek és két négy -s nem lehet. Továbbhaladva ugyanezzel a gondolatmenettel a többi borítékban 16, 32, 64, 128 található. A borítékokban levő összes pénz valóban 255.

3 4.) A nagyapa idősebb, mint a nagyanya. Ha a nagyapa életkorából kivonjuk a nagyanya életkorát, 9-cel osztható számot kapunk. Az unoka életkora ezért 9-cel osztható. Így az unoka 9, 18, 27, 36 stb. éves lehet. Ezek közül csak a 9 éves unokához található a valóságnak megfelelő korú nagyapa és nagyanya. A nagyapa 65, a nagyanya 56 éves.

4 7. OSZTÁLY 1.) Mivel januárban 31 nap van, ezért 3 olyan nap van, amiből 5 van ebben a hónapban és 4 olyan, amelyikből 4. Ezek mindig egymás után jönnek. Hétfőtől péntekig öt nap van, péntektől hétfőig 4, így hétfőnek kell 28-ának lennie. Így január 7 is hétfő, tehát január elseje kedd lesz. Hétfő Kedd Szerda Csütörtök Péntek Szombat Vasárnap ) Öt lehetőség van P és Q pontok elhelyezkedésétől függően: Ha PQ > 10, akkor nincs ilyen pont. Ha PQ = 10, akkor 1 ilyen pont van (A). Ha PQ = 2, akkor 1 ilyen pont van (A). Ha 2 < PQ < 10, akkor két ilyen pont van (A és B). Ha PQ < 2, akkor nincs ilyen pont.

5 3.) Azok a számok oszthatóak pontosan kettővel a 2, 3, 13 számok közül 2013-ig amelyek oszthatók 6-tal, vagy 26-tal, vagy 39-cel, de nem oszthatók 78-cal : 78 = 25, : 39 = 51, 2013 : 26 = 77, 2013 : 6 = 335, Így csak 6-tal = 310 szám osztható. Így csak 26-tal = 52 szám osztható. Így csak 39-cel = 26 szám osztható. Összesen tehát = 388 a keresett számok száma. 4.) Az a) állításból következik, hogy Karcsi nem asztaliteniszezik, a d)-ből, hogy nem magasugró, így ő csak futhat. Mivel az asztaliteniszező bronzot nyert, a magasugró pedig nem kapott aranyat, így csak a futó lehet aranyérmes. Tehát Karcsi az aranyérmes futó. A c) állításból következik, hogy Tamás az asztaliteniszező, aki az a) miatt bronzérmez nyert. Így Gézának marad az ezüst és a magasugrás. Az alábbi táblázat mutatja a megoldást. Magasugrás Asztalitenisz Futás Karcsi 0 0 Arany Géza Ezüst Tamás Bronz

6 8. OSZTÁLY 1.) A megadott valószínűségeket összeadva megkapjuk, mennyi a valószínűsége annak, hogy nem kivit veszünk ki. Így a valószínűségek összegét 1-ből levonva a kivi húzásának valószínűségét kapjuk: A valószínűségek összege:. A kivi húzásának valószínűsége: A nevező megmutatja, hogy legalább 420 gyümölcsnek kell lennie a ládában. 2.) A négyzet oldalegyeneseit meghosszabbítva az egyenesektől legalább 2 cm távolságra lévő pontokat keresünk. Minden oldalegyenestől 2 cm távolságban két párhuzamos egyenest húzunk, a kapott ponthalmazok közös része lesz a megoldás. 3.) Április 30 napos, így a két születésnap között eltelt napok száma: 30-k+5k= 30+4k, ahol k 6-nál nagyobb nem lehet, mert ekkor május 31-nél nagyobb dátum jönne ki Balázs barátjának. Mivel mindketten vasárnap születtek, ezért a napok száma osztható kell legyen 7-tel. K értékeit behelyettesítve egyetlen 7-tel osztható számot kapunk, k= 3 esetében, így Balázs április 3-án, barátja május 15-én született, mindkét nap vasárnap.

7 4.) A táblázatba írjuk be először amit biztosan tudunk (X), és ami biztosan nem lehet ( - ). Barna - Kovács - - Horváth X X Nagy X Ezek után: Nagy tanár úr tantárgyai közül kettőt Kovács is tanít, erre az angol, francia, földrajz tantárgyak esetében van lehetőség. Ha nyelvi tantárgyakat választjuk, akkor teljesül az a feltétel is, hogy az angolt és a franciát ugyanaz a tanár tanítja. Ha nem választanánk mindkét nyelvi tárgyat, az egyiket akkor is kellene (harmadik tárgyként). Ebben az esetben azonban nem teljesülne, hogy mindkét nyelvet ugyanaz a két tanár tanítja. Írjuk még be a nem lehetséges jelzéseket is! Barna Kovács - X X - Horváth X - - X Nagy - - X X - X Ekkor látjuk, hogy Barna tanár úr kémia, fizika, földrajz tantárgyakat tanít. Barna X X - - X - Kovács - - X X - Horváth X - - X Nagy - - X X - X Mivel fizikát már csak Horváth tanár úr taníthat, ezért a földrajz marad Kovács tanár úrnak. Földrajzot tehát Barna és Kovács tanár urak tanítanak. Barna X X - - X - Kovács - - X X X - Horváth X X X Nagy - - X X - X

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006)

Feladatlap. a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) Feladatlap a hatosztályos speciális matematika tantervű osztályok írásbeli vizsgájára (2006) 1) Karcsi januárban betegség miatt háromszor hiányzott az iskolából:12-én,14-én és 24-én. Milyen napra esett

Részletesebben

Érettségi feladatok: Sorozatok

Érettségi feladatok: Sorozatok Érettségi feladatok: Sorozatok 2005. május 10. 8. Egy mértani sorozat első tagja 8, hányadosa 2. Számítsa ki a sorozat ötödik tagját! 14. Egy számtani sorozat második tagja 17, harmadik tagja 21. a) Mekkora

Részletesebben

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató

VII. Apáczai Matematika Kupa 7. osztály 2011. Pontozási útmutató 1. feladat: VII. Apáczai Matematika Kupa 7. osztály 011. Pontozási útmutató Egy szöcske ugrál a számegyenesen. Ugrásainak hossza egység. A számegyenesen a 10-et jelölő pontból a 1-et jelölő pontba ugrással

Részletesebben

A III. forduló megoldásai

A III. forduló megoldásai A III. forduló megoldásai 1. Egy dobozban pénzérmék és golyók vannak, amelyek vagy ezüstből, vagy aranyból készültek. A dobozban lévő tárgyak 20%-a golyó, a pénzérmék 40%-a ezüst. A dobozban levő tárgyak

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

7.D Hétfő Kedd Szerda Csütörtök Péntek 8.D Hétfő Kedd Szerda Csütörtök Péntek

7.D Hétfő Kedd Szerda Csütörtök Péntek 8.D Hétfő Kedd Szerda Csütörtök Péntek 7.D Hétfő Kedd Szerda Csütörtök Péntek 1. Média Töri A/N Magyar Magyar 2. Rajz Biológia A/N Magyar Ének 3. Tesi Matek Töri Biológia Földrajz 4. A/N Ofő Matek A/N Info 5. Hittan Fizika Fizika Kémia Hittan

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?

PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =

Részletesebben

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?

7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? 7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika

Részletesebben

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.

OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk. Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :

Részletesebben

Feladatok 7. osztály

Feladatok 7. osztály Feladatok 7. osztály 1. Egy ruha árának ötöde a kereskedő haszna. Ha megemelné az árat 200 Ft-tal, akkor már csak az ár harmada lenne a haszna? Mennyi a ruha ára? 2. Egy iskolában kémiát, angolt, franciát,

Részletesebben

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály

BOLYAI MATEMATIKA CSAPATVERSENY KÖRZETI SZÓBELI FORDULÓ 2005. OKTÓBER 29. 5. osztály 5. osztály Józsi bácsi egy farkassal, egy kecskével és egy fej káposztával egy folyóhoz érkezik, amin át szeretne kelni. Csak egy olyan csónak áll rendelkezésére, amellyel a felsoroltak közül csak egyet

Részletesebben

Túlmunkaidő óra Összesen: Egyéb óra Összesen: Éjszakai pótlékos óra Összesen: 100 % pótlékos óra Összesen: Összesen: Összesen: Összesen: Összesen:

Túlmunkaidő óra Összesen: Egyéb óra Összesen: Éjszakai pótlékos óra Összesen: 100 % pótlékos óra Összesen: Összesen: Összesen: Összesen: Összesen: Jelenléti ív 2013 01 Január munkanap-ünnepnap száma: 23-1 kedd szerda csütörtök péntek szombat vasárnap hétfő kedd szerda csütörtök péntek szombat vasárnap hétfő kedd 184 ## Csuzstatás: 16 17 18 19 20

Részletesebben

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140

A) 1 óra 25 perc B) 1 óra 15 perc C) 1 óra 5 perc A) 145 B) 135 C) 140 1.) Melyik igaz az alábbi állítások közül? 1 A) 250-150>65+42 B) 98+24

Részletesebben

HÉTFŐ 8.00-8.45 9.00-9.45 9.55-10.40 10.55-11.40 11.50-12.35 12.40-13.25 13.30-14.15 14.20-15.05 15.15-16.00

HÉTFŐ 8.00-8.45 9.00-9.45 9.55-10.40 10.55-11.40 11.50-12.35 12.40-13.25 13.30-14.15 14.20-15.05 15.15-16.00 HÉTFŐ OSZTÁLY / 1.A Matematika Magyar Magyar Ének Testnevelés Napközis fogl. Napközis fogl. 2.A Matematika Magyar Testnevelés Magyar Ének 2.B Testnevelés Matematika Magyar Magyar Fejlesztés Napközis fogl.

Részletesebben

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki

1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes

Részletesebben

A MatLap 2011/10. számában megjelent A logikai táblázat módszere című cikk feladatainak a megoldása

A MatLap 2011/10. számában megjelent A logikai táblázat módszere című cikk feladatainak a megoldása A MatLap 2011/10. számában megjelent A logikai táblázat módszere című cikk feladatainak a megoldása 1. ajtóin a feliratok a következők: I. szoba: Ebben a szobában hölgy, a másikban tigris van. II. szoba:

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Nyilatkozat idegen nyelvi OKTV-hez

Nyilatkozat idegen nyelvi OKTV-hez 1. sz. melléklet (Az OKTV első fordulójából továbbjutott tanuló hozza magával a következő fordulóba.) Nyilatkozat idegen nyelvi OKTV-hez... Az élő idegen nyelvek versenyén a szlovén nemzetiségi nyelv kivételével

Részletesebben

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5

1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1

Részletesebben

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója

A 2006-2007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója SZAKKÖZÉPISKOLA A 006-007. tanévi matematika OKTV I. kategória első (iskolai) fordulójának pontozási útmutatója. Feladat: Egy számtani sorozat három egymást követő tagjához rendre 3-at, -et, 3-at adva

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc

1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória

Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók

Részletesebben

MATEMATIKA VERSENY --------------------

MATEMATIKA VERSENY -------------------- Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,

Részletesebben

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013

Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 2013 Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Elsõ félév Tizenegyedik, javított kiadás Mozaik Kiadó Szeged, 03 ÉV ELEJI ISMÉTLÉS Figyeld meg a fenti képet! Döntsd el, hogy igaz vagy hamis az

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!

Részletesebben

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai Az Országos Középiskolai Tanulmányi Verseny 008-009. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára. Határozzuk meg az alábbi egyenletrendszer valós megoldásait. ( x

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály A mellékelt ábrán két egymás melletti mező számának összege mindig a közvetlen felettük lévő mezőben szerepel. Fejtsétek meg a hiányzó számokat! 96 23 24 17 A baloldali három mezőbe tartozó

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK Telefon: 37-8900 Fax: 37-8901 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ, 1. forduló ÖTÖDIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. 1. Egy osztási műveletben az osztandó és az osztó összege 89.

Részletesebben

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k

K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k K O M B I N A T O R I K A P e r m u t á c i ó k, k o m b i n á c i ó k, v a r i á c i ó k. Az 1,, 3,, elemeknek hány permutációja van, amelynek harmadik jegye 1- es? Írjuk fel őket! Annyi ahányféleképpen

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

HÉTFŐ 8.00-8.45 9.00-9.45 9.55-10.40 10.55-11.40 11.50-12.35 12.40-13.25 13.30-14.15 14.15-15.00 15.10-15.55. Ebéd Korrepetálás Ebéd Korrepetálás

HÉTFŐ 8.00-8.45 9.00-9.45 9.55-10.40 10.55-11.40 11.50-12.35 12.40-13.25 13.30-14.15 14.15-15.00 15.10-15.55. Ebéd Korrepetálás Ebéd Korrepetálás HÉTFŐ 1.A 1.B 2.A 2.B Környezet 3.A Ének 4.A 2 Tanulószoba Tanulószoba Informatika 2 Földrajz Informatika 1 2 Tanulószoba Tanulószoba Tanulószoba 6.a!!! Informatika 2 Tanulószoba Tanulószoba 8.A Földrajz

Részletesebben

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege?

A táblára felírtuk a 0-tól 2003-ig terjedő egész számokat (tehát összesen 2004 db számot). Mekkora a táblán levő számjegyek összege? ! " # $ %& '()(* $ A táblára felírtuk a 0-tól 00-ig terjedő egész számokat (tehát összesen 004 db számot). Mekkora a táblán levő számjegyek összege? 0 0 0 0 0. 9 7. 9 9 9 + ')./ &,- $ Először a 0-tól 999-ig

Részletesebben

Magyar Labdarúgó Szövetség ÉVI NEMZETKÖZI ILLETVE FÉRFI FELNŐTT NAGYPÁLYÁS NEMZETI BAJNOKSÁGOK ÉS KUPÁK VERSENYNAPTÁRA

Magyar Labdarúgó Szövetség ÉVI NEMZETKÖZI ILLETVE FÉRFI FELNŐTT NAGYPÁLYÁS NEMZETI BAJNOKSÁGOK ÉS KUPÁK VERSENYNAPTÁRA Magyar Labdarúgó Szövetség 2016-2017. ÉVI NEMZETKÖZI ILLETVE FÉRFI FELNŐTT NAGYPÁLYÁS NEMZETI BAJNOKSÁGOK ÉS KUPÁK VERSENYNAPTÁRA Határozat szám ELN-9/2016 (02.09.) Jóváhagyás 2016.02.09. Hatálybalépés

Részletesebben

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló

III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138

Részletesebben

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. május 9. KÖZÉPSZINT I. 1) Egy háromszög belső szögeinek aránya :5:11. Hány fokos a legkisebb szög? A legkisebb szög o 0. Összesen: pont ) Egy számtani sorozat első eleme 8, differenciája.

Részletesebben

FELADATOK ÉS MEGOLDÁSOK

FELADATOK ÉS MEGOLDÁSOK 3. osztály 40 rózsát el lehet-e osztani 5 lány között úgy, hogy mindegyik lánynak páratlan számú rózsa jusson? Nem lehet.(1 pont) Öt darab páratlan szám összege páratlan, a 40 páros (1 pont). Hogyan tudnátok

Részletesebben

Epochaterv 2012/2013

Epochaterv 2012/2013 Epochaterv 2012/2013 Tanítási Tanítási Napló szerinti nap hét Naptári nap Esemény esemény, Epocharend sorszáma sorszáma továbbtanulás 9. osztály 10. osztály 11. osztály 12. osztály 13. osztály augusztus

Részletesebben

Horgásznaptár - részletes szolunáris naptár 2015

Horgásznaptár - részletes szolunáris naptár 2015 215 Január Napkelte Napnyugta Holdkelte Holdnyugta Holdfázis Major periódus Minor periódus yenge 1 Csütörtök 7:32 16:3 13:31 3:33 8:5 2:31 1:52 14:18 Jó 2 Péntek 7:32 16:4 14:13 4:35 8:57 21:23 2:44 15:1

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29.

44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Országos döntő, 1. nap - 2015. május 29. 44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Országos döntő, 1. nap - 015. május 9. ÖTÖDIK OSZTÁLY - ok 1. Egy háromjegyű szám középső számjegyét elhagyva egy kétjegyű számot kaptunk. A két szám összege

Részletesebben

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500

1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

EBÉD EBÉD EBÉD EBÉD EBÉD

EBÉD EBÉD EBÉD EBÉD EBÉD 1.s Hétfő Kedd Szerda Csütörtök Péntek 1. Önálló tanulás Önálló tanulás Önálló tanulás Önálló tanulás Önálló tanulás 2. Matek Testnevelés Matek Testnevelés Matek 3. Testnevelés Magyar Rajz Magyar Technika

Részletesebben

Figyeljük meg, hány dolgozata lett jobb, rosszabb, ugyanolyan értékű, mint az átlag!

Figyeljük meg, hány dolgozata lett jobb, rosszabb, ugyanolyan értékű, mint az átlag! Átlag Kidolgozott mintapélda Bence hét matematikadolgozatának érdemjegyei:,,,,,, Szeretné kiszámolni a dolgozatokra kapott érdemjegyeinek átlagát. Bence jegyei:,,,,,, Jegyek átlaga: ( + + + + + + ) : 7

Részletesebben

Szállodaipari technikus Órarend 2013. június 17.-november 29. Cservákné Radó Ibolya

Szállodaipari technikus Órarend 2013. június 17.-november 29. Cservákné Radó Ibolya Dátum Nap Időpont Tantárgy Oktató Helyszín 17.jún Hétfő Szerződéskötés, követelmények ismertetése Megnyitó Front office Nyelv Back (gyakol office Barista at) 1.jún Kedd :00-15:00 Front office 19.jún Szerda

Részletesebben

Igazolás. az adott középiskola pedagógiai programja szerint a középiskolai szakaszt lezáró évfolyam tanévét kettővel megelőző évfolyam tanulójáról

Igazolás. az adott középiskola pedagógiai programja szerint a középiskolai szakaszt lezáró évfolyam tanévét kettővel megelőző évfolyam tanulójáról 1. sz. melléklet (Jelentkezési lap)... Jelentkezési lap OKTV-re tantárgy kategória felkészítő tanár(ok)...... a tanuló aláírása a szülő (gondviselő) aláírása (Csak akkor, ha a jelentkező nem nagykorú.)

Részletesebben

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!

ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E! Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,

Részletesebben

Alsó tagozat Hétfő. Felső tagozat Hétfő

Alsó tagozat Hétfő. Felső tagozat Hétfő Hétfő 1. Környezet Magyar Matematika Magyar 2. Testnevelés Magyar Magyar Magyar 3. Magyar Matematika Magyar Testnevelés 4. Matematika Testnevelés Környezet Matematika 5. Matematika korrep. Korrep. Korrep.

Részletesebben

Oszthatósági problémák

Oszthatósági problémák Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,

Részletesebben

( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x,

( ) ( ) Bontsuk fel a zárójeleket: *1 pont Mindkét oldalon vonjunk össze, majd rendezzük az egyenletet: 34 = 2 x, 1. Egy 31 fős osztály játékos rókavadászaton vett részt. Az erdőben elrejtett papír rókafejeket kellett összegyűjteniük. Minden lány 4 rókafejet talált, a fiúk mindegyike pedig 5 darabot. Ha minden lány

Részletesebben

5. osztály. tört nem irreducibilis! ezért x y

5. osztály. tört nem irreducibilis! ezért x y 1. feladat: 5. osztály Anna és Tamás egy 7x10 kisnégyzetből álló tábla csokoládén osztozik. Felváltva törnek vagy egy sort vagy egy oszlopot a táblából, amíg elfogy. Ha Anna vesz először, milyen stratégiája

Részletesebben

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24

1. Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 14 B ) 20 C ) 21 D ) 24 . Mennyi a dobókockák nem látható lapjain levő pontok ( számok ) összege? A ) 4 B ) 20 C ) 2 D ) 24 2. Mennyi az alábbi művelet eredménye? 2 + 2 =? 5 6 A ) B ) C ) D ) 0. Egy könyvszekrénynek három polca

Részletesebben

Szerencsejátékok. Elméleti háttér

Szerencsejátékok. Elméleti háttér Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz

Részletesebben

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93

+ 3 5 2 3 : 1 4 : 1 1 A ) B ) C ) D ) 93 . Mennyi az alábbi művelet eredménye? 4 + 4 : 5 : 5 + 8 07 9 A ) B ) C ) D ) E ) 9 9 9 9 9. Egy digitális órát (amely 4 órás üzemmódban működik) pontosan beállítottunk. Kiderült azonban, hogy egy nap átlagosan

Részletesebben

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!

Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros! Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása

Részletesebben

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK

BÖLCS BAGOLY LEVELEZŐS MATEMATIKAVERSENY IV. forduló MEGOLDÁSOK IV. forduló 1. Hány olyan legfeljebb 5 jegyű, 5-tel nem osztható természetes szám van, amelynek minden jegye prím? Mivel a feladatban számjegyekről van szó, akkor az egyjegyű prímszámokról lehet szó: 2;

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Szakkörök 2015/2016.

Szakkörök 2015/2016. Szakkörök 2015/2016. tantárgy szakkör címe szakkört tartó tanár évfolyam angol egyeztetés alatt Bajza Sándor 7.c angol Felzárkóztatás, beszédkészség fejlesztés Eiben Ingeborg 8. évfolyam angol egyeztetés

Részletesebben

Forgalomkorlátozások 2015. áprilisban

Forgalomkorlátozások 2015. áprilisban Forgalomkorlátozások 2015. áprilisban Figyelem! Az újságban megjelent adatokhoz képest egy plusz információ a keretben! (A nyomdába kerülés idején még nem állt rendelkezésünkre): Április 25. szombaton:

Részletesebben

Írd le, a megoldások gondolatmenetét, indoklását is!

Írd le, a megoldások gondolatmenetét, indoklását is! 0 Budapest VIII., Bródy Sándor u.. Postacím: Budapest, Pf. 7 Telefon: 7-900 Fax: 7-90. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 0. április. HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Írd le,

Részletesebben

5.a 5.b 5.c 1. Testnevelés Történelem Természetismeret 2. Magyar

5.a 5.b 5.c 1. Testnevelés Történelem Természetismeret 2. Magyar CSÜTÖRTÖK PÉNTEK "A" HÉT a b c 1. Testnevelés Történelem Természetismeret Inf.(F)/Tech.(L) Testnevelés Testnevelés Természetismeret Ének Tanulás mestersége 6. Német Hon- és népismeret 7. fakultáció 1.

Részletesebben

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b?

I. rész. Feladatsor. 2. Andi keresett két olyan számot, amelyre teljesül, hogy a < b. Igaz-e, hogy a < b? 1. Feladatsor I. rész 1. Adott két halmaz. A a 9-nél kisebb páros pozitív egészek; B a 30-nál kisebb, 6-tal osztható pozitív egészek halmaza. Adja meg az A B és a B \ A halmazokat!. Andi keresett két olyan

Részletesebben

IV. EAGLES CUP NEMZETKÖZI BAJNOKSÁG FELNŐTT, IFJÚSÁGI, SERDÜLŐ 2013.

IV. EAGLES CUP NEMZETKÖZI BAJNOKSÁG FELNŐTT, IFJÚSÁGI, SERDÜLŐ 2013. IV. EAGLES CUP NEMZETKÖZI BAJNOKSÁG FELNŐTT, IFJÚSÁGI, SERDÜLŐ 2013. Verseny megnevezése: Rendező Szervezet: IV. Eagles Cup Nemzetközi ITF. Taekwon-do Bajnokság Magyar ITF Taekwon-do Szövetség Sasok Sportegyesület

Részletesebben

Ismétlés nélküli permutáció

Ismétlés nélküli permutáció Ismétlés nélküli permutáció Hányféleképpen lehet sorba rendezni n különböz elemet úgy, hogy a sorrend számít? (Ezt n elem ismétlés nélküli permutációjának nevezzük.) Például hány féleképpen lehet sorba

Részletesebben

A Pasaréti Gimnázium hírlevele

A Pasaréti Gimnázium hírlevele A Pasaréti Gimnázium hírlevele Tisztelt Szülők, Diákok! A Pasaréti Gimnázium 2014/2015-ös tanévének májusi hírlevelében megtalálhatja az állandó és várható programjainkat, valamint közérdekű információinkat.

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Bolyai János Matematikai Társulat Oktatásért Közalapítvány támogatásával Arany Dániel Matematikai Tanulóverseny 2010/2011-es tanév 1. forduló haladók III. kategória Megoldások és javítási útmutató 1. Határozzuk

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló

Arany Dániel Matematikai Tanulóverseny 2012/2013-as tanév kezdők III. kategória I. forduló Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 01/013-as tanév kezdők I II. kategória II. forduló kezdők III. kategória I. forduló Megoldások és javítási útmutató 1. Egy osztályban

Részletesebben

3. Portia ládikái: Portiának volt három ládikája (arany, ezüst, ólom), amelyek egyikébe elrejtette a képét.

3. Portia ládikái: Portiának volt három ládikája (arany, ezüst, ólom), amelyek egyikébe elrejtette a képét. 1. Portia ládikái: Portiának volt három ládikája (arany, ezüst, ólom), amelyek egyikébe elrejtette a képét. Portia az intelligenciája alapján szeretett volna magának férjet választani, ezért a ládikákra

Részletesebben

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk?

HEXAÉDEREK. 5. Hányféleképpen lehet kiolvasni Erdős Pál nevét, ha csak jobbra és lefelé haladhatunk? HEXAÉDEREK 0. Két prímszám szorzata 85. Mennyi a két prímszám összege? 1. Nyolc epszilon találkozik egy születésnapi bulin, majd mindenki kézfogással üdvözli egymást. Ha eddig 11 kézfogás történt, hány

Részletesebben

Hetedikesek levelező matematikaversenye IV. forduló

Hetedikesek levelező matematikaversenye IV. forduló Hetedikesek levelező matematikaversenye IV. forduló 1. Tudjuk, hogy A = 3 + és B =. Számítsd ki a következő értékeket: a) A + B b) A B c) d) A B Számítsuk ki A és B értékét, végezzük el a műveleteket:

Részletesebben

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3

PYTAGORIÁDA Az iskolai forduló feladatai 36. évfolyam, 2014/2015-ös tanév KATEGÓRIA P3 KATEGÓRIA P3 1. Írjátok le a feladat eredményét: 4 + 8 + 6 + 12 + 5 + 10 + 5 = 2. A kártyákra az 5, 8, 9, 4, 3 számjegyeket írtuk. Az összes kártya felhasználásával alakítsátok ki a lehető legkisebb számot.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Halmazok MTEMTIK ÉRETTSÉGI TÍPUSFELDTOK MEGOLDÁSI KÖZÉP SZINT Halmazok szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

8. OSZTÁLY ; ; ; 1; 3; ; ;.

8. OSZTÁLY ; ; ; 1; 3; ; ;. BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat

Részletesebben

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2006. február 21. KÖZÉPSZINT I. MATEMATIKA ÉRETTSÉGI 006. február 1. KÖZÉPSZINT I. 1) Mennyi annak a mértani sorozatnak a hányadosa, amelynek harmadik tagja 5, hatodik tagja pedig 40? ( pont) 3 1 5 a a q 5 6 1 40 a a q Innen q Összesen:

Részletesebben

V. MIGHTYFIST EAGLES CUP NEMZETKÖZI BAJNOKSÁG GYEREK, SERDÜLŐ, IFJÚSÁGI, FELNŐTT 2015

V. MIGHTYFIST EAGLES CUP NEMZETKÖZI BAJNOKSÁG GYEREK, SERDÜLŐ, IFJÚSÁGI, FELNŐTT 2015 Verseny megnevezése: Rendező Szervezet: V. MIGHTYFIST Eagles Cup Nemzetközi ITF. Taekwon-do Bajnokság Magyar ITF Taekwon-do Szövetség, Sasok Sportegyesület Rendező: Szalay Gábor V.dan, Békássy Csaba V.dan

Részletesebben

Érdekességek az elemi matematika köréből

Érdekességek az elemi matematika köréből Érdekességek az elemi matematika köréből Csizmadia László Bolyai Intézet, Szegedi Tudományegyetem Kutatók éjszakája Szeged, SZTE L. Csizmadia (Szeged) Kutatók éjszakája 2011. 2011.09.23. 1 / 17 Társasház

Részletesebben

KockaKobak Országos Matematikaverseny 9. osztály

KockaKobak Országos Matematikaverseny 9. osztály KockaKobak Országos Matematikaverseny 9. osztály 204. november 27. A feladatsort készítette: RÓKA SÁNDOR Lektorálta: DR. KISS GÉZA Anyanyelvi lektor: ASZÓDINÉ KOVÁCS MÁRIA www.kockakobak.hu A válaszlapról

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben

DIALOG időkapcsoló PROGRAMOZÁSI ÚTMUTATÓ

DIALOG időkapcsoló PROGRAMOZÁSI ÚTMUTATÓ DIALOG időkapcsoló PROGRAMOZÁSI ÚTMUTATÓ FUNKCIÓK I. Az időkapcsoló beállítása (a kék gombok): TECHNOCONSULT Kft. 2092 Budakeszi, Szürkebarát u. 1. T: (23) 457-110 www.technoconsult.hu info@technoconsult.hu

Részletesebben

Különös közzétételi lista Gimnázium. 1. A pedagógusok iskolai végzettsége és szakképzettsége hozzárendelve a helyi tanterv tantárgyfelosztásához

Különös közzétételi lista Gimnázium. 1. A pedagógusok iskolai végzettsége és szakképzettsége hozzárendelve a helyi tanterv tantárgyfelosztásához Különös közzétételi lista Gimnázium 1. A pedagógusok iskolai végzettsége és szakképzettsége hozzárendelve a helyi tanterv tantárgyfelosztásához S. Végzettsége Szakképzettsége 1. egyetem magyar nyelv és

Részletesebben

XVIII. Nemzetközi Magyar Matematika Verseny

XVIII. Nemzetközi Magyar Matematika Verseny 9. osztály 1. feladat: Oldjuk meg a természetes számok halmazán az 1 1 1 egyenletet? x y 009 Kántor Sándor (Debrecen). feladat: B Az ABCD deltoidban az A és C csúcsnál derékszög van, és a BD átló 1 cm.

Részletesebben

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni

1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni 1. Az ábrán látható táblázat minden kis négyzete 1 cm oldalhosszúságú. A kis négyzetek határvonalait akarjuk lefedni. Meg lehet-e ezt tenni a) 5 db 8 cm hosszú, b) 8 db 5 cm hosszú cérnával? Megoldás:

Részletesebben

Fogorvosi ügyelet 2009-2010. évre

Fogorvosi ügyelet 2009-2010. évre Fogorvosi ügyelet 2009-2010. évre 2009-11-01 vasárnap 2009-11-08 vasárnap 2009-11-07 szombat 2009-12-12 szombat 2009-12-13 vasárnap 2009-12-20 vasárnap 2010-03-13 szombat 2010-01-16 szombat 2010-02-20

Részletesebben

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória

Fazekas nyílt verseny matematikából 8. osztály, speciális kategória Fazekas nyílt verseny matematikából 8. osztály, speciális kategória 2005. január 12. feladatok kidolgozására két óra áll rendelkezésre. Számológép nem használható. példák tetszőleges sorrendben megoldhatók.

Részletesebben

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12.

XXIV. NEMZETKÖZI MAGYAR MATEMATIKAVERSENY Szabadka, április 8-12. XXIV. NEMZETKÖZI MGYR MTEMTIKVERSENY Szabadka, 05. április 8-. IX. évfolyam. Egy -as négyzetháló négyzeteibe a bal felső mezőből indulva soronként sorra beirjuk az,,3,,400 pozitív egész számokat. Ezután

Részletesebben

Egyenletek, egyenlőtlenségek VII.

Egyenletek, egyenlőtlenségek VII. Egyenletek, egyenlőtlenségek VII. Magasabbfokú egyenletek: A 3, vagy annál nagyobb fokú egyenleteket magasabb fokú egyenleteknek nevezzük. Megjegyzés: Egy n - ed fokú egyenletnek legfeljebb n darab valós

Részletesebben

50. modul 1. melléklet 2. évfolyam tanítói fólia

50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 1. melléklet 2. évfolyam tanítói fólia 50. modul 2. melléklet 2. évfolyam tanítói fólia 50. modul 3. melléklet 2. évfolyam tanítói fólia 50. modul 4. melléklet 2. évfolyam tanítói fólia és csoport

Részletesebben

Szabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály

Szabolcs-Szatmár-Bereg megyei Ambrózy Géza Matematikaverseny 2012/2013 II. forduló 5. osztály 5. osztály 1. Hány olyan téglalap van, amelynek minden oldala centiméterben kifejezve egész szám, és a területe 60 cm 2? 2. Adott a síkon egy ABC szabályos háromszög. Keresd meg a síkon az összes olyan

Részletesebben

Szent István Tanulmányi Verseny Matematika 3.osztály

Szent István Tanulmányi Verseny Matematika 3.osztály SZENT ISTVÁN RÓMAI KATOLIKUS ÁLTALÁNOS ISKOLA ÉS ÓVODA 5094 Tiszajenő, Széchenyi út 28. Tel.: 56/434-501 OM azonosító: 201 669 Szent István Tanulmányi Verseny Matematika 3.osztály 1. Hányféleképpen lehet

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Társulat Arany Dániel Matematikai Tanulóverseny 2015/2016-os tanév 1. forduló Haladók III. kategória Megoldások és javítási útmutató 1. Az a és b befogójú derékszögű háromszögnek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY ORSZÁGOS DÖNTŐ 1. forduló NYOLCADIK OSZTÁLY- MEGOLDÁSVÁZLATOK 1. A 2014-et felírtuk három természetes szám összegeként úgy, hogy ha az első számot elosztjuk

Részletesebben

2017 május május 2. kedd 19:00 A padlás Vígszínház május 2. kedd 19:00 Toldi Pesti Színház

2017 május május 2. kedd 19:00 A padlás Vígszínház május 2. kedd 19:00 Toldi Pesti Színház 2017 május 2017. május 2. kedd 19:00 A padlás Vígszínház 2017. május 2. kedd 19:00 Toldi Pesti Színház 2017. május 2. kedd 19:30 Hallgatni akartam Házi Színpad 2017. május 3. szerda 19:00 A testőr Pesti

Részletesebben

11. Sorozatok. I. Nulladik ZH-ban láttuk:

11. Sorozatok. I. Nulladik ZH-ban láttuk: 11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket

Részletesebben

FELNŐTT HÁZIORVOSI SZOLGÁLAT - RENDELÉSI IDŐK

FELNŐTT HÁZIORVOSI SZOLGÁLAT - RENDELÉSI IDŐK FELNŐTT HÁZIORVOSI SZOLGÁLAT - RENDELÉSI IDŐK Háziorvos neve Képesítése Rendelő címe Körzet száma Telefon száma Rendelési idő Helyettes 1. Dr. Mészáros Adél Tagara Bt. Cserhát ltp. 1. 0049 423-334 2. Dr.

Részletesebben

2017 május május 1. hétfő 19:00 Mikve Pesti Színház május 1. hétfő 19:00 A Pál utcai fiúk Vígszínház

2017 május május 1. hétfő 19:00 Mikve Pesti Színház május 1. hétfő 19:00 A Pál utcai fiúk Vígszínház 2017 május 2017. május 1. hétfő 19:00 Mikve Pesti Színház 2017. május 1. hétfő 19:00 A Pál utcai fiúk Vígszínház 2017. május 2. kedd 19:00 Toldi Pesti Színház 2017. május 2. kedd 19:00 A padlás Vígszínház

Részletesebben