EA. Elektrokémia alap mérés: elektromotoros erő és kapocsfeszültség mérése a Daniell cellában, az EMF koncentráció függése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "EA. Elektrokémia alap mérés: elektromotoros erő és kapocsfeszültség mérése a Daniell cellában, az EMF koncentráció függése"

Átírás

1 EA. Elektrokémia alap mérés: elektromotoros erő és kapocsfeszültség mérése a Daniell cellában, az EMF koncentráció függése Előkészítő előadás

2 Alapfogalmak Elektrokémiai cella: olyan rendszer, amelyekben kémiai folyamat (vagy koncentrációkülönbség kiegyenlítődése) elektromos áramot termelhet, vagy külső áramforrásból áramot bocsátva át rajtuk bennük kémiai folyamat játszatható le. Két típus: galváncella elektrolizáló cella Nem a felépítés más, hanem a használat módja! A legtöbb elektrokémiai cella két elektródból áll, amelyek elektrolitoldatai közösek, vagy érintkeznek.

3 A celladiagram A celladiagram az elektrokémiai cella tömör leírása. Minden olyan információt tartalmaznia kell, ami a cella fizikai megvalósításához szükséges (beleértve az alkotók halmazállapotát, a koncentrációkat). Jelölések: Az egymással elegyedni nem képes fázishatárokat választja el. Az egymással elegyedni képes fázishatárokat választja el. Az egymással elegyedni képes fázishatárokat választja el, ahol a diffúziós potenciált kiküszöböltnek tekinthetjük.

4 Egy általános celladiagram

5 A gyakorlaton vizsgált Daniell elem celladiagramja A cellareakció Zn + Cu 2+ = Zn 2+ + Cu

6 Közvetlenül mérhető mennyiségek I. Az elektrokémiai cella elektromos potenciálkülönbsége (más néven kapocsfeszültség, cellafeszültség): A celladiagramban a jobb oldalon feltüntetett elektródhoz csatlakozó fémes hozzávezetés és a baloldali elektródhoz csatlakozó, az előbbivel azonos minőségű fémes hozzávezetés elektromos potenciáljának különbsége. Jele: E Megjegyzések: Áram folyhat át a cellán. A mennyiség előjele a celladiagram felírása által meghatározott.

7 Közvetlenül mérhető mennyiségek II. Az elektrokémiai cella elektromos ereje: A kapocsfeszültség azon határértéke, amikor a cellához kapcsolt külső áramkörben nem folyik áram (I=0), és a celladiagramban feltüntetett fázishatárokon (a lehetséges elektrolit/elektrolit csatlakozásokat kivéve) lezajló valamennyi töltésátlépési folyamatra, valamint a fázisokon belül végbemenő kémiai folyamatra egyensúly áll fenn. Jele: E MF Megjegyzések: Tartalmazza az elektrolit/elektrolit csatlakozásoknál fellépő nemegyensúlyi diffúziós potenciált is. A mennyiség előjele meghatározott.

8 A diffúziós potenciál A kationok és anionok eltérő elektromos mozgékonysága miatt alakul ki. A mozgékonyabb ion megelőzi a kevésbé mozgékonyat, de elszakadni nem tud tőle. A mikroszkópikus töltésszétválás potenciálkülönbséget okoz, a diffúziós potenciált. A mérések során fontos ennek lehető legkisebb értéken tartása.

9 Közvetlenül mérhető mennyiségek III. Az elektródpotenciál: Egy olyan elektrokémiai cella elektromos potenciálkülönbsége, amely celladiagramjának bal oldalán feltűntetett elektród egyensúlyi állapotban van. A mért potenciálkülönbség ekkor a jobb oldali elektródnak a bal oldalira vonatkoztatott elektródpotenciálja. Jele: ε vagy E Megjegyzések: Mindig meg kell adni az alkalmazott összehasonlító (referencia) elektródot is. A vizsgált elektródnak nem kell egyensúlyban lennie.

10 A Daniell elem összeállítása Az elektrokémiai cellát a celladiagram alapján állítjuk össze: Ügyeljünk arra, hogy NE keverjük össze a két elektród részeit! Ha a fémcinket a réz-szulfát oldatba tesszük, végbemegy a közvetlen elektronátadás, a redoxi reakció (Zn + Cu 2+ = Zn 2+ + Cu) és kiváló réz tönkreteszi a cink elektródfémet (töréskár!).

11 A Daniell elem összeállítása Az elektródfémet a saját csiszolópapírjával csiszoljuk meg. Töltsük meg buborékmentesen az elektród üvegedényét. Egy kicsi főzőpohárba annyi telített kálium-nitrát oldatot töltsünk, amennyi elég a két elektród összekötéséhez.

12 Az elektromotoros erő mérése Kapocsfeszültség mérése bizonyos körülmények között. A cellához kapcsolt külső áramkörben nem folyik áram (I=0). A celladiagramban feltüntetett fázishatárokon (a lehetséges elektrolit/elektrolit csatlakozásokat kivéve) lezajló valamennyi töltésátlépési folyamatra, valamint a fázisokon belül végbemenő kémiai folyamatra egyensúly áll fenn. A két feltétel teljesítése nem mindig egyszerű.

13 A gyakorlaton használt módszerek Nagy bemenő ellenállású voltmérő használata Extrapolációs módszer Bónusz: Ha van idő lehet mérni kompenzációs módszerrel is.

14 E MF mérése nagy bemenő ellenállású voltmérővel A galváncellára egy feszültségmérőt (voltmérőt) kapcsolunk, amelynek mérőellenállása (R B ) nagyon nagy. Ha az egyensúlyokra vonatkozó feltételeink teljesülnek a mért kapocsfeszültség jó közelítéssel a cella elektromotoros ereje.

15 E MF mérése nagy bemenő ellenállású voltmérővel Írjuk fel Ohm-törvényét a teljes áramkörre, illetve a mérőellenállásra: MF b B K B A fenti két áramerősség megegyezik, így MF b B K B K MF B b B

16 E MF mérése nagy bemenő ellenállású voltmérővel Ha R B >>R b, akkor R b a nevezőből elhanyagolható: K MF B b B Tehát egyszerűsítés után: K MF

17 E MF mérése nagy bemenő ellenállású voltmérővel Ha az egyensúlyokra vonatkozó feltételeink teljesülnek a mért kapocsfeszültség jó közelítéssel a cella elektromotoros ereje. Elegendő ideig várunk az egyensúlyok beállására (a fázishatárokon fennálló egyensúlyok lassan állnak be). A mérőáram ( ) elhanyagolható az elektródok csereáramához képest (így mérésünk gyakorlatilag nem zavarja meg az egyensúlyokat).

18 E MF mérése extrapolációs módszerrel A galváncellára különböző, ismert nagyságú külső ellenállásokat (R k ) kapcsolunk és az ezeken eső feszültséget mérjük.

19 E MF mérése extrapolációs módszerrel A cella elektromotoros ereje a belső és a külső ellenállásokon esik: MF b k Átrendezve: k MF b Írjuk fel Ohm-törvényét a belső és a külső ellenállásra: b b Ezt felhasználva: k MF b K k

20 E MF mérése extrapolációs módszerrel k MF b Eszerint a kapocsfeszültség kapocsfeszültség/külső ellenállás függvény (E k E k /R k függvény) egy egyenes. Az egyenes meredeksége a belső ellenállás mínusz egyszerese ( R b ), tengelymetszete az elektromotoros erő (E MF ).

21 E MF mérése extrapolációs módszerrel A módszerrel nemcsak az elektromotoros erő, hanem a cella belső ellenállása is meghatározható. A belső ellenállás erősen függ a cella fizikai felépítésétől. Végezzük el a méréssorozatot kétféle csapállással (zárt illetve nyitott állással) és hasonlítsuk össze az eredményeket! A csapokat csak a két sorozat között mozgassuk, egy mérési sorozaton belül ne!

22 E MF mérése extrapolációs módszerrel Egy tipikus grafikon: E k /mv K B

23 Minta számolás nyitott csapállás esetére Az illesztett egyenes (E k = a + b E k /R k ) két paramétere: a = 1,10097 V b = 5, Ω A paraméterek hibája: S a = 1, V S b = 22,9654 Ω

24 Minta számolás nyitott csapállás esetére A meredekség megbízhatósági (konfidencia) intervalluma (Ha statisztikus biztonság 95%, akkor α = 5%, f = n - 2 = 6, t α = 2,447) : b ± t α S b = ( 55581,46 ± 56,19) Ω Így a galváncella belső ellenállása hibahatárral (R b = b): R b = (55,581 ± 0,056) kω A meredekség megbízhatósági (konfidencia) intervalluma hasonló feltételek mellett: a ± t α S a = (1,10097 ± 0,00042) V Így a galváncella elektromotoros ereje hibahatárral (E MF = a): E MF = (1,10097 ± 0,00042) V

25 Minta számolás nyitott csapállás esetére A cellareakció szabadentalpia-változása: r G = zfe cell E cell pontos értéke nem ismert, de jól közelíthető a mért elektromotoros erővel. A hibahatárt az elektromotoros erő hibájából számíthatjuk: r G = zfe MF = C/mol (1,10097 ± 0,00042) V = ( ,1809 ± 81,0474) J/mol Így a cellareakció szabadentalpia változása hibahatárral: r G = ( 212,454 ± 0,081) kj/mol

26 Az elektromotoros erő koncentrációfüggésének tanulmányozása Állítsunk össze elektrokémiai cellákat telített kalomelelektródból és Cu 2+ -ionokat különböző koncentrációban tartalmazó rézelektródokból. Pt(s) Hg(l) Hg 2 Cl 2 (s) KCl(aq) KNO 3 (aq) CuSO 4 (aq)+mgso 4 (aq) Cu(s) telített telített c(cuso 4 ) c(mgso 4 )

27 Az elektromotoros erő koncentrációfüggésének tanulmányozása A réz-szulfát oldatokat 0,100 mol/dm 3 koncentrációjú törzsoldatból hígítjuk. A hígításokat 0,100 mol/dm 3 koncentrációjú magnéziumszulfát oldattal készítjük, hogy az oldatok ionerőssége megegyezzen. A vizsgálandó koncentrációk: 0,100 mol/dm 3, 0,03 mol/dm 3, 0,010 mol/dm 3, 0,003 mol/dm 3, 0,0010 mol/dm 3 A gyakorlaton csak a 0,100 mol/dm 3 és 0,003 mol/dm 3 koncentrációjú oldatot készítik el és mérik meg saját maguk, a többi oldatkoncentrációhoz adatokat kapnak.

28 A cella elektromotoros ereje a réz-szulfát koncentrációjának függvényében A logaritmikus kapcsolat elvi háttere a Nernstegyenlet.

29 A Nernst-egyenlet Az elektromotoros erő felírható az alábbi módon: E MF = ε r,jobb - ε r,bal + φ diff = ε r,cu2+/cu - ε r,tel. kalomel + φ diff Mivel telített KNO 3 -os áramkulcsot használtunk a diffúziós potenciált kiküszöböltnek tekinthetjük: E MF = ε r,cu2+/cu - ε r,tel. kalomel Beírva a rézelektródra vonatkozó Nernst-egyenletet: E MF = ε o r,cu2+/cu + RT/2F ln(c(cu 2+ )) - ε r,tel. kalomel ε o r,cu2+/cu a rézelektród anyagmennyiség koncentrációra vonatkozó formális standardpotenciálja. Átrendezve: E MF = ε o r,cu2+/cu - ε r,tel. kalomel + RT/2F ln(c(cu 2+ ))

30 A Nernst-egyenlet E MF = ε o r,cu2+/cu - ε r,tel. kalomel + RT/2F ln(c(cu 2+ )) Áttérve 10-es alapú logaritmusra: E MF = ε o r,cu2+/cu - ε r,tel. kalomel + ln(10) RT/2F lg(c(cu 2+ )) Azaz az illesztett egyenes meredeksége ln(10) RT/2F (kb. 29 mv), tengelymetszete a rézelektród formális standardpotenciáljának és a telített kalomelelektród potenciáljának különbsége. A kapott tengelymetszetből a rézelektród standardhidrogénelektródra vonatkoztatott formálpotenciálja megadható: ε o r,cu2+/cu = tengelymetszet + ε r,tel. kalomel

31 Beadandó eredmények -A nagybemenőellenállásúvoltmérővelmeghatározotte MF -értékek(nyitottés zárt csapállásnál, a becsült hibákkal együtt); (2 db eredmény) -E k / V (vagymv)-r k / Ω(vagykΩ) adatpárok(nyitottészártcsapoknál); (1 vagy2 táblázatban) -E k -E k /R k grafikonazillesztettegyenessel(nyitottészártcsapnálmértadatokkal egyaránt); (1 vagy 2 ábrán ábrázolva) -AzextrapolációvalkapottE MF adatok(nyitottészártcsapnál) a 95%-osstatisztikus biztonsághoz tartozó hibahatárokkal; (2 db eredmény) -belsőellenállás(nyitottészártcsapnál), aze k -E k /R k függvénymeredekségéből számolva, a 95%-os statisztikus biztonsághoz tartozó hibahatárokkal; (2 db eredmény) -A Pt(s) Hg(l) Hg 2 Cl 2 (s) KCl(aq) KNO 3 (aq) CuSO 4 (aq)+mgso 4 (aq) Cu(s) telített telített c(cuso 4 ) c(mgso 4 ) galváncella MF E adatai a koncentráció függvényében, táblázatosan; (1 táblázat) -E MF lg[c(cu 2+ ) / moldm -3 összefüggésgrafikusan, azillesztettegyenes egyenletével, és az illesztés statisztikai adataival; (1 ábra) -a Cu 2+ / Cu elektródformálpotenciáljaa standard hidrogénelektródra vonatkoztatva(v-ban), a 95%-osstatisztikusbiztonsághoztartozóhibahatárokkal; (1 db eredmény) - r G értékeka megfelelőhibahatárokkal. (5 dberedmény)

Elektrokémia Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı.

Elektrokémia Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı. Elektrokémia 2012. Kiegészítés a praktikumhoz Elektrokémiai cella, Kapocsfeszültség, Elektródpotenciál, Elektromotoros erı Láng Gyızı Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem

Részletesebben

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás ELEKTROKÉMIA 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos

Részletesebben

13 Elektrokémia. Elektrokémia Dia 1 /52

13 Elektrokémia. Elektrokémia Dia 1 /52 13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:

Részletesebben

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás Elekrtokémia 1 ELEKTROKÉMIA Elektromos áram: - fémekben: elektronok áramlása - elektrolitokban: ionok irányított mozgása Elektrolízis: elektromos áram által előidézett kémiai átalakulás Galvánelem: elektromos

Részletesebben

7 Elektrokémia. 7-1 Elektródpotenciálok mérése

7 Elektrokémia. 7-1 Elektródpotenciálok mérése 7 Elektrokémia 7-1 Elektródpotenciálok mérése 7-2 Standard elektródpotenciálok 7-3 E cell, ΔG, és K eq 7-4 E cell koncentráció függése 7-5 Elemek: áramtermelés kémiai reakciókkal 7-6 Korrózió: nem kívánt

Részletesebben

Vízionszorzat meghatározása hidrogénelektród segítségével

Vízionszorzat meghatározása hidrogénelektród segítségével Vízionszorzat meghatározása 016 1.) Mérési feladat Vízionszorzat meghatározása hidrogénelektród segítségéel A gyakorlat célja a ízionszorzat (K ) meghatározása telített kalomelelektródból és hidrogénelektródból

Részletesebben

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet

Orvosi Fizika 13. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika 13. Elektromosságtan és mágnességtan az életfolyamatokban 2. Bari Ferenc egyetemi tanár SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Szeged, 2011. december 5. Egyenáram Vezető

Részletesebben

Általános Kémia, 2008 tavasz

Általános Kémia, 2008 tavasz 9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal

Részletesebben

Kémiai alapismeretek 11. hét

Kémiai alapismeretek 11. hét Kémiai alapismeretek 11. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2011. május 3. 1/8 2009/2010 II. félév, Horváth Attila c Elektród: Fémes

Részletesebben

Kémiai alapismeretek 7.-8. hét

Kémiai alapismeretek 7.-8. hét Kémiai alapismeretek 7.-8. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék 2012. október 16.-október 19. 1/12 2012/2013 I. félév, Horváth Attila

Részletesebben

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások

Részletesebben

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Redox reakciók azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Az oxidációs szám megadja, hogy egy atomnak mennyi lenne a töltése, ha gondolatban a kötő elektronpárokat teljes mértékben

Részletesebben

Elektrokémia 02. (Biologia BSc )

Elektrokémia 02. (Biologia BSc ) Elektokéma 02. (Bologa BSc ) Elektokéma cella, Kapocsfeszültség, Elektódpotencál, Elektomotoos eő Láng Győző Kéma Intézet, Fzka Kéma Tanszék Eötvös Loánd Tudományegyetem Budapest Temodnamka paaméteek TERMODINAMIKAI

Részletesebben

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Redox reakciók azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Az oxidációs szám megadja, hogy egy atomnak mennyi lenne a töltése, ha gondolatban a kötő elektronpárokat teljes mértékben

Részletesebben

Kémia fogorvostan hallgatóknak Munkafüzet 10. hét

Kémia fogorvostan hallgatóknak Munkafüzet 10. hét Kémia fogorvostan hallgatóknak Munkafüzet 10. hét Elektrokémiai kísérletek (144-153. oldal) Írták: Agócs Attila, Berente Zoltán, Gulyás Gergely, Jakus Péter, Lóránd Tamás, Nagy Veronika, Radó-Turcsi Erika,

Részletesebben

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.

Részletesebben

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban

6 Ionszelektív elektródok. elektródokat kiterjedten alkalmazzák a klinikai gyakorlatban: az automata analizátorokban 6. Szelektivitási együttható meghatározása 6.1. Bevezetés Az ionszelektív elektródok olyan potenciometriás érzékelők, melyek valamely ion aktivitásának többé-kevésbé szelektív meghatározását teszik lehetővé.

Részletesebben

Elektro-analitikai számítási feladatok 1. Potenciometria

Elektro-analitikai számítási feladatok 1. Potenciometria Elektro-analitikai számítási feladatok 1. Potenciometria 1. Vas-só részlegesen oxidált oldatába Pt elektródot merítettünk. Ennek az elektródnak a potenciálját egy telített kalomel elektródhoz képest mérjük

Részletesebben

ELEKTROANALITIKA (ELEKTROKÉMIAI ANALÍZIS)

ELEKTROANALITIKA (ELEKTROKÉMIAI ANALÍZIS) ELEKTROANALITIKA (ELEKTROKÉMIAI ANALÍZIS) Olyan analitikai eljárások gyűjtőneve, amelyek során elektromos áramot alkalmaznak (Römpp) Az analitikai információ megszerzéséhez vizsgáljuk vagy az oldatok fázishatárain

Részletesebben

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy

= 163, 63V. Felírható az R 2 ellenállásra, hogy: 163,63V. blokk sorosan van kapcsolva a baloldali R 1 -gyel, és tudjuk, hogy Határozzuk meg és ellenállások értékét, ha =00V, = 00, az ampermérő 88mA áramot, a voltmérő,v feszültséget jelez! Az ampermérő ellenállását elhanyagolhatóan kicsinek, a voltmérőét végtelen nagynak tekinthetjük

Részletesebben

Ellenállásmérés Ohm törvénye alapján

Ellenállásmérés Ohm törvénye alapján Ellenállásmérés Ohm törvénye alapján A mérés elmélete Egy fémes vezetőn átfolyó áram I erőssége egyenesen arányos a vezető végpontjai közt mérhető U feszültséggel: ahol a G arányossági tényező az elektromos

Részletesebben

Általános és szervetlen kémia Laborelıkészítı elıadás VI

Általános és szervetlen kémia Laborelıkészítı elıadás VI Általános és szervetlen kémia Laborelıkészítı elıadás VI Redoxiegyenletek rendezésének általános lépései Példák fémoldódási egyenletek rendezésére Halogénvegyületek reakciói A gyakorlaton vizsgált redoxireakciók

Részletesebben

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző

Elektrokémia 03. Cellareakció potenciálja, elektródreakció potenciálja, Nernst-egyenlet. Láng Győző lektrokéma 03. Cellareakcó potencálja, elektródreakcó potencálja, Nernst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loránd Tudományegyetem Budapest Cellareakcó Közvetlenül nem mérhető (

Részletesebben

Természetvédő 1., 3. csoport tervezett időbeosztás

Természetvédő 1., 3. csoport tervezett időbeosztás Természetvédő 1., 3. csoport tervezett időbeosztás 3. ciklus: 2012. január 05. Elektro-analitika elmélet. 2012. január 12. Titrimetria elmélet 2012. január 19. március 01. A ciklus mérései: 1. ph-mérés,

Részletesebben

A standardpotenciál meghatározása a cink példáján. A galváncella működése elektrolizáló cellaként Elektródreakciók standard- és formálpotenciálja

A standardpotenciál meghatározása a cink példáján. A galváncella működése elektrolizáló cellaként Elektródreakciók standard- és formálpotenciálja Általános és szervetlen kémia Laborelőkészítő előadás VII-VIII. (október 17.) Az elektródok típusai A standardpotenciál meghatározása a cink példáján Számítási példák galvánelemekre Koncentrációs elemek

Részletesebben

Elektrokémia laboratóriumi gyakorlat

Elektrokémia laboratóriumi gyakorlat Elektrokémia laboratóriumi gyakorlat Elméleti háttér A Nernst-egyenlet A kémiai reakció által végzett maximális hasznos munka egyenlő a szabadentalpia változásával. Állandó nyomáson és hőmérsékleten a

Részletesebben

Elektrokémiai gyakorlatok

Elektrokémiai gyakorlatok Elektrokémiai gyakorlatok Az elektromos áram hatására bekövetkezı kémiai változásokkal, valamint a kémiai energia elektromos energiává alakításának folyamataival, törvényszerőségeivel foglalkozik. A változást

Részletesebben

Az elektrokémia áttekintése

Az elektrokémia áttekintése 1 Az elektrokémia áttekintése 2 Elektródfolyamatok kinetikája (heterogén dinamikus elektrokémia) Homogén Heterogén Egyensúlyi elektrokémia (árammentes rendszerek) Elektrolitoldatok termodinamikája: elektrolitos

Részletesebben

Elektrokémia. Elektrokémia. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Elektrokémia. Elektrokémia. A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Elektrokémia Michael Faraday (1791-1867 ) Walther ermann Nernst (1864-1941) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 1 Az elektromos áram Elektromos áram: Töltéssel rendelkező

Részletesebben

Jellemző redoxi reakciók:

Jellemző redoxi reakciók: Kémia a elektronátmenettel járó reakciók, melynek során egyidejű elektron leadás és felvétel történik. Oxidáció - elektron leadás - oxidációs sám nő Redukció - elektron felvétel - oxidációs sám csökken

Részletesebben

Elektrokémia B01. Mi a ph? Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest

Elektrokémia B01. Mi a ph? Láng Győző. Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest Elektrokémia B01 Mi a ph? Láng Győző Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest Mi a ph? 1:48:51 Természetesen mindenki tudja, hogy mi az a ph, hiszen tanulta az iskolában...

Részletesebben

Redoxireakciók. Egy anyag csak akkor oxidálódhat, ha a leadott elektronokat egyidejűleg egy másik anyag felveszi

Redoxireakciók. Egy anyag csak akkor oxidálódhat, ha a leadott elektronokat egyidejűleg egy másik anyag felveszi Redoxireakciók Redoxireakció: elektronátadási folyamat Oxidáció: oxigénnel való reakció a szén elégetése, rozsdásodás (a fémek oxidációja) alkohol -> aldehid -> karbonsav elektronleadás (oxidációs szám

Részletesebben

ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK

ELEKTROKÉMIA GALVÁNCELLÁK ELEKTRÓDOK LKTOKÉMIA GALVÁNCLLÁK LKTÓDOK GALVÁNCLLÁK - olyan rendszere, amelyeben éma folyamat (vagy oncentrácó egyenlítdés) eletromos áramot termelhet vagy áramforrásból rajtu áramot átbocsátva éma folyamat játszódhat

Részletesebben

HETEROGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTRÓDOK ÉS GALVÁNELEMEK

HETEROGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTRÓDOK ÉS GALVÁNELEMEK HETEROGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTRÓDOK ÉS GALVÁNELEMEK I. Az elektrokémia áttekintése (ismét ). II. Galvánelemek/galváncellák és elektródok termodinamikája. A. Galvánelem vs. elektrolizáló cella

Részletesebben

Az elektrokémia áttekintése

Az elektrokémia áttekintése Az elektrokémia áttekintése 1 Homogén Heterogén Egyensúlyi elektrokémia (árammentes rendszerek) Elektrolitoldatok termodinamikája: elektrolitos disszociáció ionok termodinamikája és aktivitása Galvánelemek/galváncellák

Részletesebben

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 3. Termoelektromos hűtőelemek vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc. Mérés dátuma: 28... Leadás dátuma: 28.. 8. . Mérések ismertetése A Peltier-elemek az. ábrán látható módon vannak elhelyezve

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C

Részletesebben

K. Az elektródpotenciál mérése L. Az elektródpotenciálok skálája M. Az elektródok fajtái N. Összegzés

K. Az elektródpotenciál mérése L. Az elektródpotenciálok skálája M. Az elektródok fajtái N. Összegzés HETEROGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTRÓDOK ÉS GALVÁNELEMEK I. Az elektrokémia áttekintése (ismét ). II. Galvánelemek/galváncellák és elektródok termodinamikája. A. Galvánelem vs. elektrolizáló cella

Részletesebben

Eredeti Veszprémi T. (digitálisan Csonka G) jegyzet: X. fejezet

Eredeti Veszprémi T. (digitálisan Csonka G) jegyzet: X. fejezet 2011/2012 tvsi félév 7. ór Elektródpotenciálok, Stndrd elektródpotenciál foglm Egyserű fémelektródok, oxelektródok (pl. Sn 2+ /Sn 4+ ) ph-függő redoxelektródok (pl. Mn 2+ /MnO 4, Cr 3+ /Cr 2 O 7 2 ) Másodfjú

Részletesebben

Termoelektromos hűtőelemek vizsgálata

Termoelektromos hűtőelemek vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 4. MÉRÉS Termoelektromos hűtőelemek vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 30. Szerda délelőtti csoport 1. A mérés célja

Részletesebben

Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel

Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel Sók oldáshőjének és jég olvadáshőjének meghatározása anizotermés hővezetéses kaloriméterrel Előadó: Zsély István Gyula Készült Sziráki Laura, Szalma József 2012 előadása alapján Laborelőkészítő előadás,

Részletesebben

Kiegészítő tudnivalók a fizikai mérésekhez

Kiegészítő tudnivalók a fizikai mérésekhez Kiegészítő tudnivalók a fizikai mérésekhez A mérési gyakorlatokra való felkészüléshez a Fizika Gyakorlatok c. jegyzet használható (Nagy P. Fizika gyakorlatok az általános és gazdasági agrármérnök hallgatók

Részletesebben

Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető.

Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető. Áramforrások Elsődleges cella: áramot termel kémiai anyagokból, melyek a cellába vannak bezárva. Ha a reakció elérte az egyensúlyt, kimerül. Nem tölthető. Másodlagos cella: Használat előtt fel kell tölteni.

Részletesebben

KORRÓZIÓS ÁRAM MÉRÉSE FÉM KORRÓZIÓSEBESSÉGÉNEK MEGHATÁROZÁSA KORRÓZIÓS ÁRAM MÉRÉSE ALAPJÁN

KORRÓZIÓS ÁRAM MÉRÉSE FÉM KORRÓZIÓSEBESSÉGÉNEK MEGHATÁROZÁSA KORRÓZIÓS ÁRAM MÉRÉSE ALAPJÁN 7. Laboratóriumi gyakorlat KORRÓZIÓS ÁRAM MÉRÉS FÉM KORRÓZIÓSBSSÉGÉNK MGHATÁROZÁSA KORRÓZIÓS ÁRAM MÉRÉS ALAPJÁN Ha egy fémet oldatba merítünk a fém és az oldat fázishatárán olyan folyamatok indulnak meg,

Részletesebben

Elektrokémia 01. Fogalmak, Elektrokémia, Elektroanalitika, Elektródok. Láng Győző

Elektrokémia 01. Fogalmak, Elektrokémia, Elektroanalitika, Elektródok. Láng Győző Elektrokémia 01. Fogalmak, Elektrokémia, Elektroanalitika, Elektródok Láng Győző Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest Elektrokémia Elektrokémia: Egy ma már klasszikusnak

Részletesebben

Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás

Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás Redoxi reakciók Elektrokémiai alapok Műszaki kémia, Anyagtan I. 12-13. előadás Dolgosné dr. Kovács Anita egy.doc. PTE MIK Környezetmérnöki Tanszék Redoxi reakciók Például: 2Mg + O 2 = 2MgO Részfolyamatok:

Részletesebben

Elektrokémia 01. Fogalmak, Elektrokémia, Elektroanalitika, Elektródok. Láng Győző

Elektrokémia 01. Fogalmak, Elektrokémia, Elektroanalitika, Elektródok. Láng Győző Elektrokémia 01. Fogalmak, Elektrokémia, Elektroanalitika, Elektródok Láng Győző Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest Elektrokémia Elektrokémia: Egy ma már klasszikusnak

Részletesebben

Elektronátadás és elektronátvétel

Elektronátadás és elektronátvétel Általános és szervetlen kémia 11. hét Elızı héten elsajátítottuk, hogy a közös elektronpár létrehozásával járó reakciók csoportjában milyen jellemzıi vannak sav-bázis és komplexképzı reakcióknak Mai témakörök

Részletesebben

Elektrokémiai preparátum

Elektrokémiai preparátum Elektrokémiai preparátum A laboratóriumi gyakorlat során elvégzendő feladat: Nátrium-hipoklorit oldat előállítása elektrokémiai úton; az oldat hipoklorit tartalmának meghatározása jodometriával. Daniell-elem

Részletesebben

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk?

1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Számítások ph-val kombinálva 1) Standard hidrogénelektród készülhet sósavból vagy kénsavoldatból is. Ezt a savat 100-szorosára hígítva, mekkora ph-jú oldatot nyerünk? Mekkora az eredeti oldatok anyagmennyiség-koncentrációja?

Részletesebben

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel

Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel Sók oldékonysági szorzatának és oldáshőjének meghatározása vezetés méréssel 1. Bevezetés Az elektromos ellenállás anyagi tulajdonság, melyen -definíció szerint- az anyagon áthaladó 1 amper intenzitású

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

Nehézségi gyorsulás mérése megfordítható ingával

Nehézségi gyorsulás mérése megfordítható ingával Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja

Részletesebben

Számítások ph-val kombinálva

Számítások ph-val kombinálva Bemelegítő, gondolkodtató kérdések Igaz-e? Indoklással válaszolj! A A semleges oldat ph-ja mindig éppen 7. B A tömény kénsav ph-ja 0 vagy annál is kisebb. C A 0,1 mol/dm 3 koncentrációjú sósav ph-ja azonos

Részletesebben

Logaritmikus erősítő tanulmányozása

Logaritmikus erősítő tanulmányozása 13. fejezet A műveleti erősítők Logaritmikus erősítő tanulmányozása A műveleti erősítő olyan elektronikus áramkör, amely a két bemenete közötti potenciálkülönbséget igen nagy mértékben fölerősíti. A műveleti

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Elektrokémiai fémleválasztás. Alapok: elektródok és csoportosításuk

Elektrokémiai fémleválasztás. Alapok: elektródok és csoportosításuk Elektrkéma fémleválasztás Alapk: elektródk és csprtsításuk Péter László Elektrkéma fémleválasztás Elektródk és csprtsításuk - 1 Elektrkéma reakcó, elektród Mely reakcókat nevezzük elektrkéma reakcóknak?

Részletesebben

I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése. A. Elektrolitok jellemzése

I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése. A. Elektrolitok jellemzése HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. B. Ionok termodinamikai képződési függvényei C. Ionok aktivitása oldatokban, Debye Hückelelmélet. 2 I. Az elektrokémia

Részletesebben

Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó.

Az Ohm törvény. Ellenállás karakterisztikája. A feszültség és az áramerősség egymással egyenesen arányos, tehát hányadosuk állandó. Ohm törvénye Az Ohm törvény Az áramkörben folyó áram erőssége függ az alkalmazott áramforrás feszültségétől. Könnyen elvégezhető kísérlettel mérhetjük az áramkörbe kapcsolt fogyasztón a feszültséget és

Részletesebben

AZ ELEKTROKÉMIA VÁLOGATOTT ALKALMAZÁSI TERÜLETEI

AZ ELEKTROKÉMIA VÁLOGATOTT ALKALMAZÁSI TERÜLETEI AZ ELEKTROKÉMIA VÁLOGATOTT ALKALMAZÁSI TERÜLETEI Elektrokémiai áramforrások Csoportosításuk: - primer elemek: nem tölthetk újra - szekunder elemek: újabb kisütési-feltöltési ciklus lehetséges - tüzelanyag

Részletesebben

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét

Részletesebben

Napelem E2. 2.0 Bevezetés. Ebben a mérésben használt eszközök a 2.1 ábrán láthatóak.

Napelem E2. 2.0 Bevezetés. Ebben a mérésben használt eszközök a 2.1 ábrán láthatóak. 2.0 Bevezetés Ebben a mérésben használt eszközök a 2.1 ábrán láthatóak. 2.1 ábra Az E2 mérésben használt eszközök. Az eszközök listája (lásd: 2.1 ábra): A: napelem B: napelem C: doboz rekeszekkel, melyekbe

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

9. évfolyam II. félév 2. dolgozat B csoport. a. Arrheneus szerint bázisok azok a vegyületek, amelyek... b. Arrheneus szerint a sók...

9. évfolyam II. félév 2. dolgozat B csoport. a. Arrheneus szerint bázisok azok a vegyületek, amelyek... b. Arrheneus szerint a sók... 9. évfolyam II. félév 2. dolgozat B csoport 1. Egészítsd ki az alábbi mondatokat! a. Arrheneus szerint bázisok azok a vegyületek, amelyek... b. Arrheneus szerint a sók.... c. Az erős savak vízben........

Részletesebben

23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan

23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 23. Indikátorok disszociációs állandójának meghatározása spektrofotometriásan 1. Bevezetés Sav-bázis titrálások végpontjelzésére (a mőszeres indikáció mellett) ma is gyakran alkalmazunk festék indikátorokat.

Részletesebben

Kiss László Láng Győző ELEKTROKÉMIA

Kiss László Láng Győző ELEKTROKÉMIA Kiss László Láng Győző ELEKTROKÉMIA A könyv megjelenését támogatta a Magyar Tudományos Akadémia Kémiai Tudományok Osztálya Dr. Kiss László, Dr. Láng Gőző, 2011 ISBN 978 963 331 148 6 A könyv és adathordozó

Részletesebben

2012.05.02. 1 tema09_20120426

2012.05.02. 1 tema09_20120426 9. Elektokémia kísélet: vasszög éz-szulfát oldatban cink eszelék éz-szulfát oldatban buttó eakció: + = + oxidációs folyamat: = + 2e edukciós folyamat: + 2e = Tegyünk egy ézlemezt éz-szulfát oldatba! Rövid

Részletesebben

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2.

Bevezető fizika (infó), 8. feladatsor Egyenáram, egyenáramú áramkörök 2. evezető fizika (infó), 8 feladatsor Egyenáram, egyenáramú áramkörök 04 november, 3:9 mai órához szükséges elméleti anyag: Kirchhoff törvényei: I Minden csomópontban a befolyó és kifolyó áramok előjeles

Részletesebben

1. Kolorimetriás mérések A sav-bázis indikátorok olyan "festékek", melyek színüket a ph függvényében

1. Kolorimetriás mérések A sav-bázis indikátorok olyan festékek, melyek színüket a ph függvényében ph-mérés Egy savat vagy lúgot tartalmazó vizes oldat savasságának vagy lúgosságának erősségét a H + vagy a OH - ion aktivitással lehet jellemezni. A víz ionszorzatának következtében a két ion aktivitása

Részletesebben

Elektrokémia kommunikációs dosszié ELEKTROKÉMIA. ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Elektrokémia kommunikációs dosszié ELEKTROKÉMIA. ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ ELEKTROKÉMIA ANYAGMÉRNÖK NAPPALI MSc KÉPZÉS, SZABADON VÁLASZTHATÓ TÁRGY TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2014. Tartalom jegyzék 1. Tantárgyleírás,

Részletesebben

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével

5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5. Az adszorpciós folyamat mennyiségi leírása a Langmuir-izoterma segítségével 5.1. Átismétlendő anyag 1. Adszorpció (előadás) 2. Langmuir-izoterma (előadás) 3. Spektrofotometria és Lambert Beer-törvény

Részletesebben

A DIREKT POTENCIOMETRIA ALKALMAZÁSA

A DIREKT POTENCIOMETRIA ALKALMAZÁSA Galbács G. Galbács Z. Sipos P.: Műszeres analitikai kémiai gyakorlatok DPM A DIREKT POTENCIOMETRIA ALKALMAZÁSA A GYAKORLAT CÉLJA: Az ionszelektív elektróddal kivitelezett direkt, kalibrált potenciometria

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal O k t a t á si Hivatal 0/0. tanévi Országos Középiskolai Tanulmányi Verseny Kémia II. kategória. forduló I. FELADATSOR Megoldások. A helyes válasz(ok) betűjele: B, D, E. A legnagyobb elektromotoros erejű

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

Közlekedésmérnöki Kar Műszaki kémia labor. 3. Korrózió. FÉMEK KORRÓZIÓJA Dr.Bajnóczy Gábor

Közlekedésmérnöki Kar Műszaki kémia labor. 3. Korrózió. FÉMEK KORRÓZIÓJA Dr.Bajnóczy Gábor Közlekedésmérnöki Kar Műszaki kémia labor 3. Korrózió FÉMEK KORRÓZIÓJA Dr.Bajnóczy Gábor A természetben a legtöbb fém valamely vegyületeként fordul elő. Ezek oxidok, szulfidok, karbonátok vagy más komplex

Részletesebben

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás

5. Sók oldáshőjének meghatározása kalorimetriás módszerrel. Előkészítő előadás 5. Sók oldáshőjének meghatározása kalorimetriás módszerrel Előkészítő előadás 2019.02.04. Célja: hő mérése A kalorimetriás mérések Használatával meghatározható: átalakulási hő reakcióhő oldáshő hidratációs

Részletesebben

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9

A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi

Részletesebben

Elektromos töltés, áram, áramkör

Elektromos töltés, áram, áramkör Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban

Részletesebben

Elektrokémia 01. (Biologia BSc)

Elektrokémia 01. (Biologia BSc) Elektrokémia 01. (Biologia BSc) Fogalmak, Elektrokémia, Elektroanalitika, Elektródok Láng Győző Kémiai Intézet, Fizikai Kémiai Tanszék Eötvös Loránd Tudományegyetem Budapest Elektrokémia Elektrokémia:

Részletesebben

ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár

ROMAVERSITAS 2017/2018. tanév. Kémia. Számítási feladatok (oldatok összetétele) 4. alkalom. Összeállította: Balázs Katalin kémia vezetőtanár ROMAVERSITAS 2017/2018. tanév Kémia Számítási feladatok (oldatok összetétele) 4. alkalom Összeállította: Balázs Katalin kémia vezetőtanár 1 Számítási feladatok OLDATOK ÖSSZETÉTELE Összeállította: Balázs

Részletesebben

Ni 2+ Reakciósebesség mol. A mérés sorszáma

Ni 2+ Reakciósebesség mol. A mérés sorszáma 1. feladat Összesen 10 pont Egy kén-dioxidot és kén-trioxidot tartalmazó gázelegyben a kén és oxigén tömegaránya 1,0:1,4. A) Számítsa ki a gázelegy térfogatszázalékos összetételét! B) Számítsa ki 1,0 mol

Részletesebben

A kémiai és az elektrokémiai potenciál

A kémiai és az elektrokémiai potenciál Dr. Báder Imre A kémiai és az elektrokémiai potenciál Anyagi rendszerben a termodinamikai egyensúly akkor állhat be, ha a rendszerben a megfelelő termodinamikai függvénynek minimuma van, vagyis a megváltozása

Részletesebben

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n)

Általános kémia képletgyűjtemény. Atomszerkezet Tömegszám (A) A = Z + N Rendszám (Z) Neutronok száma (N) Mólok száma (n) Általános kémia képletgyűjtemény (Vizsgára megkövetelt egyenletek a szimbólumok értelmezésével, illetve az egyenletek megfelelő alkalmazása is követelmény) Atomszerkezet Tömegszám (A) A = Z + N Rendszám

Részletesebben

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2)

Összesen: 20 pont. 1,120 mol gázelegy anyagmennyisége: 0,560 mol H 2 és 0,560 mol Cl 2 tömege: 1,120 g 39,76 g (2) I. FELADATSOR (KÖZÖS) 1. B 6. C 11. D 16. A 2. B 7. E 12. C 17. E 3. A 8. A 13. D 18. C 4. E 9. A 14. B 19. B 5. B (E is) 10. C 15. C 20. D 20 pont II. FELADATSOR 1. feladat (közös) 1,120 mol gázelegy

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv

Mikroszkóp vizsgálata és folyadék törésmutatójának mérése (8-as számú mérés) mérési jegyzõkönyv (-as számú mérés) mérési jegyzõkönyv Készítette:, II. éves fizikus... Beadás ideje:... / A mérés leírása: A mérés során egy mikroszkóp különbözõ nagyítású objektívjeinek nagyítását, ezek fókusztávolságát

Részletesebben

1. feladat Összesen: 10 pont. 2. feladat Összesen: 14 pont

1. feladat Összesen: 10 pont. 2. feladat Összesen: 14 pont 1. feladat Összesen: 10 pont Az AsH 3 hevítés hatására arzénre és hidrogénre bomlik. Hány dm 3 18 ºC hőmérsékletű és 1,01 10 5 Pa nyomású AsH 3 -ből nyerhetünk 10 dm 3 40 ºC hőmérsékletű és 2,02 10 5 Pa

Részletesebben

Transzportfolyamatok

Transzportfolyamatok Transzportfolyamatok Boda Dezső 2009. május 21. 1. Diffúzió elektromos tér hiányában Fizikai kémiából tanultuk, hogy valamely anyagban az i komponens áramsűrűségére fluxus) egy dimenzióban a következő

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet (12/2013. (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet (12/2013. (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet (12/2013. (III. 28.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. 54 524 01 Laboratóriumi technikus Tájékoztató A vizsgázó az első lapra írja

Részletesebben

Elektromos áram. Vezetési jelenségek

Elektromos áram. Vezetési jelenségek Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai

Részletesebben

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata.

Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. El. II. 5. mérés. SZIMMETRIKUS ERŐSÍTŐK MÉRÉSE. A mérés célja : Szimmetrikus bemenetű erősítők működésének tanulmányozása, áramköri paramétereinek vizsgálata. A mérésre való felkészülés során tanulmányozza

Részletesebben

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)

Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő) Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése Mérő neve: Márkus Bence Gábor Mérőpár neve: Székely Anna Krisztina Szerda délelőtti csoport Mérés ideje: 10/19/2011 Beadás ideje: 10/26/2011 1 1. A mérés rövid leírása

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

4. Laboratóriumi gyakorlat A HŐELEM

4. Laboratóriumi gyakorlat A HŐELEM 4. Laboratóriumi gyakorlat A HŐELEM 1. A gyakorlat célja: A hőelemek és mérőáramkörei működésének és használatának tanulmányozása. Az U=f(T) karakterisztika felrajzolása. 2. Elméleti bevezető 2.1. Hőelemek

Részletesebben

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet.

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet. Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet. Biológiai membránok passzív elektromos tulajdonságai. A sejtmembrán kondenzátorként viselkedik

Részletesebben

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató

Részletesebben

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont

1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont 1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó

Részletesebben

Mágneses szuszceptibilitás mérése

Mágneses szuszceptibilitás mérése Mágneses szuszceptibilitás mérése (Mérési jegyzőkönyv) Hagymási Imre 2006. március 12. (hétfő délelőtti csoport) 1. A mérés elmélete Az anyagok külső mágneses tér hatására polarizálódnak. Általában az

Részletesebben

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II.

Oktatási Hivatal. A 2008/2009. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja. FIZIKÁBÓL II. Oktatási Hivatal A 8/9. tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatlapja FIZIKÁBÓL II. kategóriában Feladat a Fizika Országos Középiskolai Tanulmányi Verseny harmadik fordulójára.

Részletesebben