BIOMATEMATIKA ELŐADÁS

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "BIOMATEMATIKA ELŐADÁS"

Átírás

1 BIOMATEMATIKA ELŐADÁS 7. Bevezetés a valószínűségszámításba Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád

2 A diasor tartalma 1 Bevezetés 2 Definíciók, tulajdonságok Példák Valószínűségi mező Véges valószínűségi mezők 3 Feltételes valószínűség Teljes valószínűség tétele, Bayes tétele 4 Biológiai példák

3 Bevezetés MI A KÍSÉRLET? Kísérlet alatt ellenőrzött feltételek alatt történő, ismételhető vizsgálatot értünk. Természetes elvárás, hogy ha bármilyen kutatólaborban ugyanazt a vizsgálatot végzik el, akkor ugyanolyan eredményt kell kapjanak. A biológiában azonban tökéletes kísérlet nincs, gyakran megjelennek a vizsgálat során nem reprodukálható eredmények, reakciók is (pl. az etológiában ez igen gyakori jelenség). A megfigyelés és a megfigyelt tulajdonság, egyed, populáció, stb. viselkedését, reakcióit véletlen, előre nem látható tényezők befolyásolják. Ezek vizsgálatával a matematikai statisztika, illetve a valószínűségszámítás foglalkozik.

4 Bevezetés Mennyi az esélye, hogy egy szabályos pénzérmét feldobva fejet kapunk? A józan ész és a tapasztalat azt sugallja, hogy 50%. Ez durván annyit jelent, hogy a dobások fele fej, fele írás. Értelmes ember játszaná-e a következő játékot? Vagyonát három egyenlő részre osztaná, az 1 / 3 -át feltenné fej-írás játékra. Ha nyer, abbahagyná a játékot, ha veszít, akkor feltenné a maradék 2 / 3 részt is. Ha a fele fej, fele írás törvényszerűség "pontosan" érvényesülne, akkor az 1 / 3 részt mindig megnyerné, hiszen vagy az első dobásra nyerne 1 / 3 részt, vagy ha elsőre veszít 1 / 3 részt, akkor a második dobásra nyerne 2 / 3 részt. Természetesen józan ember nem játszaná ezt a játékot, hiszen az "50% fej" törvényszerűség csak igen sok dobás esetén, "átlagosan" érvényesül. Az ilyen törvényszerűségeket nevezzük statisztikai törvényszerűségeknek.

5 Bevezetés Mennyi a valószínűsége, hogy két hónapon belül házasságot kötök (feltéve, hogy még nem tettem meg)? A kérdés értelmes ugyan, mégsem szoktuk feltenni. Ha ugyanis a dolog úgy áll, hogy már kitűzték az esküvő napját, akkor az esély 100%. Ha pedig még a láthatáron sincs menyasszony/vőlegény, akkor 0%. De a kérdés feltevése nem ezért helytelen. Hanem azért, mert ritkán szoktam házasságot kötni. A valószínűségszámítási, statisztikai törvényszerűségek csak nagy számban végbemenő jelenségekre vonatkoztathatók. Tehát a kérdést úgy érdemes feltenni, hogy mennyi az esélye annak, hogy egy x éves férfi/nő két hónapon belül házasságot köt valakivel. Ez már tekinthető tömegjelenségnek, hiszen elég sokan vannak várólistán (ha mondjuk 18 < x < 20). Mennyi a valószínűsége, hogy holnap felkel a nap? Józan emberek ezt a kérdést sem teszik fel túl gyakran. És nem azért, mert a jelenség nem történne meg kellően sokszor, hanem azért, mert nem tekinthető véletlennek.

6 Bevezetés Tehát körülírhatjuk a valószínűségszámítás témáját: a véletlen tömegjelenségekre vonatkozó törvényszerűségek megállapítása. Véletlen jelenség az, aminek a kimenetelét a tekintetbe vett (rendelkezésre álló) feltételek nem határozzák meg egyértelműen. Tömegjelenségen pedig olyan jelenséget értünk, amely nagy számban megy végbe egyszerre (pl. populációk elvándorlása), vagy sokszor megismételhető (pl. szerencsejátékok). A levonható törvényszerűségek statisztikai jellegűek, azaz nagy számú végrehajtás során átlagosan érvényes törvények. A véletlen jelenségek leírására sztochasztikus modelleket használunk. Ilyen modellek esetén az adott feltételrendszer nem határozza meg egyértelműen, hogy egy esemény bekövetkezik-e, vagy sem. Ezzel ellentétben, az ún. determinisztikus modellek esetén a tekintetbe vett feltételrendszer egyértelműen meghatározza, hogy egy adott esemény bekövetkezik-e, vagy sem. A jelenségek különböző aspektusból más és más (determinisztikus, illetve sztochasztikus) modellel is leírhatóak.

7 Definíciók, tulajdonságok Definíció Egy adott kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük és ω 1,ω 2,...-el jelöljük. Az elemi események csak egyféleképp következhetnek be (pl. egy kockával egyféleképp dobhatunk 6-ost). Az adott kísérlethez tartozó összes elemi események halmazát eseménytérnek nevezzük és Ω-val jelöljük. Az elemi eseményekből álló halmazokat eseményeknek nevezzük (pl. 3-ast, vagy 4-est dobunk a kockával. Vagy két kockával dobva az összeg 10). Az eseményeket rendszerint A,B,C,...-vel, míg az összes események halmazát F -el jelöljük. Műveletek események között Események összege: Az A és B események összegén azt az A + B eseményt értjük, amely akkor következik be, ha vagy A, vagy B, vagy mindkettő bekövetkezik. Nyilván A + B = A B a halmazelméleti unió műveletét használva. Tetszőleges (véges, vagy végtelen) sok esemény összege olyan esemény, mely akkor következik be, ha az összeadandóknak legalább az egyike bekövetkezik.

8 Definíciók, tulajdonságok Műveletek események között Események szorzata: Az A és B események szorzatán azt az A B eseményt értjük, mely akkor következik be, ha mind A, mind B bekövetkezik. Nyilván A B = A B. Tetszőleges sok esemény szorzata az az esemény, amely akkor következik be, ha a tényezők mindegyike bekövetkezik. Esemény ellentettje: Az A esemény ellentettjén azt az A eseményt értjük, mely akkor következik be, ha A nem következik be. A nyilván A-nak Ω-ra vonatkozó komplementere. Események különbsége: Az A B akkor következik be, ha A bekövetkezik, de B nem. Események szimmetrikus differenciája: A B akkor következik be, ha A és B közül pontosan egy következik be.

9 Definíciók, tulajdonságok - Példa 1 Dobókocka feldobásánál 6 lehetséges kimenetelünk van, így az elemi események: ω 1 = 1,ω 2 = 2,...,ω 6 = 6. Az eseménytér így: Ω = {1,2,3,4,5,6}. Legyen A az az esemény, hogy páros számot dobunk, B pedig azt, hogy 3-nál nagyobbat. Ekkor: A = {2,4,6}, B = {4,5,6}. 2 Húzzunk 32 lapos "Magyar-kártya" pakliból egy lapot. Ekkor Ω egy 32 elemű halmaz. Legyen A az az esemény, hogy pirosat húztunk, B pedig azt, hogy 7-est. Ekkor: A = {p 7,p 8,p 9,p 10,p A,p F,p K,p Á }, B = {p 7,t 7,m 7,z 7 }. 3 Dobjunk fel egy érmét kétszer egymás után! Itt Ω = {FF,II,FI,IF}, ahol például IF =elsőre írást dobtunk, másodjára fejet.

10 Definíciók, tulajdonságok - Példa 4 Dobjunk egy pontot véletlenszerűen a [0,1] intervallumra! Ekkor Ω = [0,1]. Jelölje A azt, hogy a pont a [0, 1 / 2 ]-re esik. Ekkor A = [0, 1 / 2 ]. 5 Dobjunk fel egy érmét annyiszor, amíg fejet nem kapunk! Ekkor Ω = {ω 1,ω 2,...,ω }, ahol ω 1 = F,ω 2 = IF,ω 3 = IIF,... Ekkor ω azt a lehetséges kimenetelt jelenti, amikor végtelen sok írást dobunk egymás után. Jelölje A n azt az eseményt, hogy a kísérlet legfeljebb n dobásig tart. Ekkor A = {ω 1,ω 2,...,ω n }. Statisztikai megvilágítás Dobjunk fel egy pénzérmét "sokszor" és írjuk fel, hogy milyen sorozatot kaptunk (pl. FIIFIFFF...). Ha n dobásból k fejet kapunk, akkor k-t a fej dobások gyakoriságának, míg k n-et a fej dobások relatív gyakoriságának nevezzük. Például az FIIFIFFF... sorozat esetén a relatív gyakoriságok sorozata: 1 1, 1 2, 1 3, 2 4, 2 5, 3 6, 4 7, 5 8,...

11 Definíciók, tulajdonságok - Példa Az így kapott sorozat nem "szabályos" sorozat, a hagyományos matematikai értelemben (egyelőre) nem állíthatjuk róla, hogy konvergens. Csupán annyi látható, hogy "szabálytalan, véletlen ingadozásokat" mutató sorozat, és a kísérlet újabb végrehajtásakor másik "szabálytalan" sorozat jön ki. Csupán annyit remélhetünk, hogy valamilyen (homályos) értelemben 1 2 körül ingadozik (mivel az érme szabályos). A jelenségek egy részénél a relatív gyakoriság stabilitást mutat. Pontosabban fogalmazva, tekintsünk egy kísérletet és ehhez kapcsolódva egy A eseményt. Hajtsuk végre a kísérletet n-szer, egymástól függetlenül, azonos körülmények között. Jelölje k A az A bekövetkezései számát. Ha a k A n relatív gyakoriság nagy n esetén egy fix szám körül ingadozik, akkor ezt az A-ra jellemző számot P(A)-val jelöljük és A valószínűségének nevezzük. Ez a gondolatmenet azonban távol áll egy pontos matematikai definíciótól.

12 Definíciók, tulajdonságok Definíció Az (Ω,F,P) hármast valószínűségi mezőnek nevezzük, ha Ω az eseménytér, F az események halmaza és P : F R egy olyan függvény, melyre P(A) 0 (bármely esemény legalább 0% eséllyel előfordul). P(Ω) = 1 (az eseménytérből valami 100% eséllyel elő fog fordulni). P(A 1 + A ) = P(A 1 ) + P(A 2 ) +..., ha A i Ω, i = 1,2,... és A i A j = /0, ha i j (ha az események egymást kizárják, akkor az egyes valószínűségek összeadódnak. Pl. annak az esélye, hogy egy kockával 3-ast, vagy 5-öst dobunk egyenlő annak az esélyével, hogy 3-ast plusz annak az esélyével, hogy 5-öst). A P függvényt valószínűségnek nevezzük, a fenti három tulajdonságot pedig a valószínűségfüggvény axiómáinak nevezzük.

13 Definíciók, tulajdonságok Tétel - A valószínűség tulajdonságai P(/0) = 0 (annak az esélye, hogy nem következik be semmi 0). P(A B) = P(A) P(A B) (az A eseményből kivonjuk az A és B események metszetét). P(A + B) = P(A) + P(B) P(A B) (szita-formula). P(A) = 1 P(A) (ha pl. 80% eséllyel esik ma az eső, akkor 100% 80% = 20% eséllyel nem). Ha B A, akkor P(B) P(A) (a valószínűség monoton). Definíció Azt mondjuk, hogy az A és B események függetlenek, ha együttes bekövetkezésük esélye ugyanannyi, mint a külön-külön történő bekövetkezésük esélyének szorzata, azaz ha P(A B) = P(A) P(B).

14 Véges valószínűségi mezők Tegyük fel, hogy egy kísérlet kimenetelei (az elemi események száma) N, azaz Ω = {ω 1,...,ω N }. Jelölje p i az ω i elemi esemény valószínűségét: p i = P(ω i ), i = 1,2,...,N. Mivel a valószínűség additív, így N N i P(ω i ) = P(Ω) = 1. i=1p i=1 Tehát a p i számok összege 1. Továbbá ( ) P(A) = P ω i A = p i. ω i A

15 Véges valószínűségi mezők - klasszikus valószínűségi mező Azaz egy A esemény valószínűségét úgy számítjuk ki, hogy az A-t alkotó elemi események valószínűségeit összeadjuk. Megfordítva, legyen N pozitív egész, és legyen adott N db nemnegatív, 1 összegű szám: p 1,p 2,...,p N. Ekkor van olyan véges valószínűségi mező, hogy ezen p 1,p 2,...,p N számok éppen az elemi események valószínűségei. Legyen ugyanis Ω = {ω 1,...,ω N } tetszőleges N elemű halmaz és legyen P(A) = p i, ha A Ω. Ez a ω i A P függvény nyilván teljesíti a valószínűségfüggvény axiómáit. Olyan kísérleteknél, ahol a lehetséges kimenetelek száma véges és egyforma eséllyel fordulnak elő az elemi események valószínűségei: p i = 1 N, i = 1,2,...,N. Így P(A) = k N = kedvező esetek száma összes esetek száma. Ez a valószínűség klasszikus kiszámítási módja.

16 Véges valószínűségi mezők - klasszikus valószínűségi mező A fenti képlet persze nem állja meg a helyét a valószínűség definíciójaként (bár kezdetben arra használták), hiszen egyrészt nem minden kísérlet írható le klasszikus valószínűségi mezővel, másrészt a fenti képlet során feltételeztük az "egyforma valószínűségeket", így a definícióhoz már eleve felhasználnánk a valószínűség fogalmát. Példák - folytatás 1 Szabályos kocka feldobásakor az elemi események valószínűsége 1 6. A páros dobás valószínűsége: P(A) = 3 6 = Egy kártya kihúzásának valószínűsége Piros húzás esélye: P(A) = 8 32 = Két érme feldobásakor minden elemi esemény 1 4 valószínűségű (IF FI, így hibás "egy fej, egy írásként" gondolni erre a két esetre). 4 Egy pont [0,1]-re való dobása nem írható le véges valószínűségi mezővel.

17 Véges valószínűségi mezők - klasszikus valószínűségi mező 5 Ha nézzük a szabályos érme N-szer történő feldobását, úgy látható, hogy ez a kísérlet nem írható le egyetlen valószínűségi mezővel (jelenlegi tudásunk alapján). Nézzük meg, hogy az egyes ω i, i = 1,2,... elemi események mekkora eséllyel fordulnak elő: P(ω 1 ) = 1 / 2, hisz annak az esélye, hogy egyből fejet dobunk 50%. P(ω 2 ) = 1 / 4, az írás, majd fej dobás esélye 1 / 2 1/ P(ω N ) = (1 / 2 ) N, hisz a pénzérme minden dobásakor 1 / 2 eséllyel jön ki írás és fej is. Így ha az A n valószínűségét keressük, akkor a tanult képlet alapján: P(A n ) = 1 / / / (1 / 2 ) n, ami nem más, mint 1 (1 / 2 ) n. Így, ha n-el végtelenbe tartunk, akkor a korábban tanultak alapján tényleg kijön a szükséges 1 valószínűség, mint határérték.

18 Feltételes valószínűség Definíció Legyen A és B két esemény, P(B) > 0. Ekkor az A esemény B-re vonatkozó feltételes valószínűsége alatt a értéket értjük. P(A B) = P(A B) P(B) Példa Lényegében az egész eseménytér egy részére szűkítjük csak le a vizsgálatainkat. Tekintsünk egy fős gorillapopulációt, amiben 5050 nőstény és 4950 hím egyed van. A nőstények között 100, a hímek között kg-nál nehezebb található. Ha véletlenszerűen kiválasztunk egy egyedet a populációból, akkor annak a valószínűsége, hogy 180 kg-nál nehezebb 0,1. Ha a nőstények közül választunk ki, akkor ez 100/5050 = 0, 0198.

19 Feltételes valószínűség Ugyanez képlettel számolva: ha A jelöli azt az eseményt, hogy az egyed 180 kg-nál nehezebb és B azt, hogy az egyed nőstény, akkor P(A B) = P(A B) P(B) = 100 / / = = 0,0198. Azaz először kiszámoltuk azt, hogy mekkora valószínűséggel lesz az adott egyed nőstény és 180 kb-nál nehezebb is. Ez nem más, mint: P(A B) = , hisz a teljes populációban összesen 100 megfelelő súlyú nőstény egyed van. Majd kiszámoltuk annak az esélyét, hogy az egyed nőstény: P(B) = (itt most nem volt semmi feltevésünk a tömegre vonatkozóan, csak arra voltunk kíváncsiak, hogy mekkora eséllyel választunk nőstényt). Végül a két számot elosztottuk egymással és megkaptuk a végeredményt.

20 Feltételes valószínűség Definíció Események egy A 1,A 2,... sorozatát teljes eseményrendszernek nevezzük, ha egymást páronként teljesen kizárják és összegük az egész eseménytér. Tétel - A teljes valószínűség tétele Legyen A 1,A 2,... egy pozitív valószínűségű eseményekből álló teljes eseményrendszer. Ekkor bármely B eseményre Tétel - Bayes tétele P(B) = P(B A 1 )P(A 1 ) + P(B A 2 )P(A 2 ) +... Legyen A 1,A 2,... egy pozitív valószínűségű eseményekből álló teljes eseményrendszer. Ekkor bármely A pozitív valószínűségű esemény esetén P(A i B) = P(B A i)p(a i ) j=1 P(B A j )P(A j ).

21 Biológiai példák Egy házaspár egyik tagja 40% eséllyel BB-s és 60% eséllyel B0-s vércsoportú, míg a másik tagja 30% eséllyel AA-s és 70% eséllyel A0-s. Mekkora valószínűséggel lesz a gyermekük 0-s vércsoportú? Az öröklődés jobb megértéséhez elkészítjük a B0 és A0 esetben az ún. B 0 Punett táblázatot: A AB A0 0 B0 00 Látható, hogy ebben az esetben a születendő utód 25% eséllyel lesz 0-s vércsoportú. Hasonlóan gondolkozva, íme a lehetséges párosítások a megfelelő valószínűségekkel: AA + BB 0%. AA + B0 0%. A0 + BB 0%. A0 + B0 25%.

22 Biológiai példák Következő lépésben meg kell néznünk, hogy az egyes szülői párosítások mekkora eséllyel fordulnak elő: AA + BB 0,3 0,4 = 0,12 = 12%. AA + B0 0,3 0,6 = 0,18 = 18%. A0 + BB 0,7 0,4 = 0,28 = 28%. A0 + B0 0,7 0,6 = 0,42 = 42%. (Látható, hogy összeadva tényleg kiadják a 100%-ot). Így annak az esélye, hogy a gyermek 0-s vércsoportú lesz: 0, , , ,42 0,25 = 0,105 = 10,5%

23 Biológiai példák Radioaktív sugárzás hatását vizsgáljuk egy sejttenyészetre. Egy adott α részecske valamely sejtet 25% eséllyel károsítja, 50% eséllyel el is pusztítja, míg 25% eséllyel nem találja el. Két részecske által okozott találat viszont mindenképp a sejt pusztulását okozza. Mekkora eséllyel fog 4 adagnyi besugárzás során a sejt elpusztulni? Legyen az az esemény, hogy a részecske elpusztítja a sejtet A, az, hogy károsítja B, az pedig, hogy nem találja el C. Ekkor P(A) = 0,5, P(B) = 0,25, P(C) = 0,25. Tekintsük az X 1 X 2 X 3 X 4 eseménysorozatot, ahol X i {A,B,C}. A sejt pusztulása akkor következik be, ha a sorozatban van A, vagy ha nincs, akkor legalább két B van benne. Annak a valószínűsége, hogy egy részecske sem pusztítja el közvetlenül a sejtet (azaz A) 0,5 4. Így annak az esélye, hogy lesz közte A: 1 0,5 4.

24 Biológiai példák Annak a valószínűsége, hogy legalább 2 darab B jelenik meg és 0 darab A: [( ) ( ) ( )] , = 11 0,25 4, hiszen pl. az első esetben annak az esélye, hogy 2 darab B éri majd 0,25 2, míg, hogy 2 darab "nem talált", ismét 0,25 2. De meg is kell mondani, hogy a 4 besugárzásból melyik 2-nél érte B, ami ( ) 4 2 féleképp lehetséges (a második esetben 3 darab B éri 0,25 3 eséllyel és egy darab C 0,25 eséllyel, stb.) Így annak az esélye, hogy a sejt elpusztul: (1 0,5 4 ) ,25 4 = 0,9805 = 98,05%.

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be.

1. A kísérlet naiv fogalma. melyek közül a kísérlet minden végrehajtásakor pontosan egy következik be. IX. ESEMÉNYEK, VALÓSZÍNŰSÉG IX.1. Események, a valószínűség bevezetése 1. A kísérlet naiv fogalma. Kísérlet nek nevezzük egy olyan jelenség előidézését vagy megfigyelését, amelynek kimenetelét az általunk

Részletesebben

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44.

Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. Dr. Vincze Szilvia Az ész természetéhez tartozik, hogy a dolgokat nem mint véletleneket, hanem mint szükségszerűeket szemléli (Spinoza: Etika, II. rész, 44. tétel) Környezetünkben sok olyan jelenséget

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József

Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. Eseményalgebra Prof. Dr. Závoti, József Matematika III. 2. : Eseményalgebra Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel

Részletesebben

Környezet statisztika

Környezet statisztika Környezet statisztika Permutáció, variáció, kombináció k számú golyót n számú urnába helyezve hányféle helykitöltés lehetséges, ha a golyókat helykitöltés Minden urnába akárhány golyó kerülhet (ismétléses)

Részletesebben

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József

Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. A valószínűségszámítás elemei Prof. Dr. Závoti, József Matematika III. 3. : A valószínűségszámítás elemei Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Néhány kockadobással kapcsolatos feladat 1 P 6

Néhány kockadobással kapcsolatos feladat 1 P 6 Néhány kockadobással kapcsolatos feladat Feldobunk egy kockát. Az eseménytér: ; 2; ; ; ; Az összes esetek száma:. Feldobunk egy kockát. Mi a valószínűsége, hogy hatost dobunk? A kedvező esetek száma: (hatost

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 3. MA3-3 modul. A valószínűségszámítás elemei Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof Dr Závoti József Matematika III 3 MA3-3 modul A valószínűségszámítás elemei SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999

Részletesebben

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3

Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 Feladatok és megoldások az 1. sorozat Építőkari Matematika A3 1. Tegyük fel, hogy A és B egymást kölcsönösen kizáró események, melyekre P{A} = 0.3 és P{B} = 0.. Mi a valószínűsége, hogy (a A vagy B bekövetkezik;

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

Gazdasági matematika II. vizsgadolgozat megoldása A csoport

Gazdasági matematika II. vizsgadolgozat megoldása A csoport Gazdasági matematika II. vizsgadolgozat megoldása A csoport Definiálja az alábbi fogalmakat!. Egy eseménynek egy másik eseményre vonatkozó feltételes valószínűsége. ( pont) Az A esemény feltételes valószínűsége

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok

Matematikai alapok és valószínőségszámítás. Valószínőségszámítási alapok Matematikai alapok és valószínőségszámítás Valószínőségszámítási alapok Bevezetés A tudományos életben vizsgálódunk pontosabb megfigyelés, elırejelzés, megértés reményében. Ha egy kísérletet végzünk, annak

Részletesebben

Példa a report dokumentumosztály használatára

Példa a report dokumentumosztály használatára Példa a report dokumentumosztály használatára Szerző neve évszám Tartalomjegyzék 1. Valószínűségszámítás 5 1.1. Események matematikai modellezése.............. 5 1.2. A valószínűség matematikai modellezése............

Részletesebben

Feladatok és megoldások a 8. hétre Építőkari Matematika A3

Feladatok és megoldások a 8. hétre Építőkari Matematika A3 Feladatok és megoldások a 8. hétre Építőkari Matematika A3 1. Oldjuk meg a következő differenciálegyenlet rendszert: x + 2y 3x + 4y = 2 sin t 2x + y + 2x y = cos t. (1 2. Oldjuk meg a következő differenciálegyenlet

Részletesebben

Valószínűségszámítás összefoglaló

Valószínűségszámítás összefoglaló Statisztikai módszerek BMEGEVGAT Készítette: Halász Gábor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019.

Valószín ségszámítás. Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes 2018/2019. Valószín ségszámítás Survey statisztika mesterszak és földtudomány alapszak Backhausz Ágnes agnes@cs.elte.hu 2018/2019. szi félév A valószín ségszámítás kurzus céljai a statisztika megalapozása: a véletlen

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Mi az adat? Az adat elemi ismeret. Az adatokból információkat

Mi az adat? Az adat elemi ismeret. Az adatokból információkat Mi az adat? Az adat elemi ismeret. Tények, fogalmak olyan megjelenési formája, amely alkalmas emberi eszközökkel történő értelmezésre, feldolgozásra, továbbításra. Az adatokból gondolkodás vagy gépi feldolgozás

Részletesebben

Valószínűségszámítás és statisztika. István Fazekas

Valószínűségszámítás és statisztika. István Fazekas Valószínűségszámítás és statisztika István Fazekas Tartalomjegyzék 1. fejezet. A valószínűségszámítás alapfogalmai 5 1.1. A valószínűség 5 1.2. Halmazalgebrák és σ-algebrák 11 1.3. A feltételes valószínűség

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem.

Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Eseményalgebra. Esemény: minden amirl a kísérlet elvégzése során eldönthet egyértelmen hogy a kísérlet során bekövetkezett-e vagy sem. Elemi esemény: a kísérlet egyes lehetséges egyes lehetséges kimenetelei.

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@math.elte.hu fogadóóra: szerda 10-11 és 13-14, D 3-415 2018/2019. tavaszi félév Bevezetés A valószín ségszámítás

Részletesebben

BME Nyílt Nap november 21.

BME Nyílt Nap november 21. Valószínűségszámítás, statisztika és valóság Néhány egyszerű példa Kói Tamás Budapesti Műszaki és Gazdaságtudományi Egyetem koitomi@math.bme.hu BME Nyílt Nap 2014. november 21. Matematikai modell Matematikai

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O

4. Az A és B események egymást kizáró eseményeknek vagy idegen (diszjunkt)eseményeknek nevezzük, ha AB=O 1. Mit nevezünk elemi eseménynek és eseménytérnek? A kísérlet lehetséges kimeneteleit elemi eseményeknek nevezzük. Az adott kísélethez tartozó elemi események halmazát eseménytérnek nevezzük, jele: X 2.

Részletesebben

Klasszikus valószínűségszámítás

Klasszikus valószínűségszámítás Klasszikus valószínűségi mező 1) Egy építőanyag raktárba vasúton és teherautón szállítanak árut. Legyen az A esemény az, amikor egy napon vasúti szállítás van, B esemény jelentse azt, hogy teherautón van

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség

Részletesebben

Elméleti összefoglaló a Valószín ségszámítás kurzushoz

Elméleti összefoglaló a Valószín ségszámítás kurzushoz Elméleti összefoglaló a Valószín ségszámítás kurzushoz Véletlen kísérletek, események valószín sége Deníció. Egy véletlen kísérlet lehetséges eredményeit kimeneteleknek nevezzük. A kísérlet kimeneteleinek

Részletesebben

Valószínűségszámítás

Valószínűségszámítás Eszterházy Károly Főiskola Matematikai és Informatikai Intézet Tómács Tibor Valószínűségszámítás programtervező informatikusok részére Eger, 010. szeptember 0. Tartalomjegyzék 1. Véletlen események...............................

Részletesebben

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás

Biometria az orvosi gyakorlatban. Számítógépes döntéstámogatás SZDT-01 p. 1/23 Biometria az orvosi gyakorlatban Számítógépes döntéstámogatás Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Gyakorlat SZDT-01 p.

Részletesebben

Matematika B4 II. gyakorlat

Matematika B4 II. gyakorlat Matematika B II. gyakorlat 00. február.. Bevezető kérdések. Feldobunk egy kockát és egy érmét. Ábrázoljuk az eseményteret! Legyenek adottak az alábbi események: -ast dobunk, -est dobunk, fejet dobunk,

Részletesebben

Matematika A4 I. gyakorlat megoldás

Matematika A4 I. gyakorlat megoldás Matematika A I. gyakorlat megoldás 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció n! n! k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen állíthatunk sorba, ha k

Részletesebben

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János

Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János BUDAPESTI MŐSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI KAR JÁRMŐELEMEK ÉS HAJTÁSOK TANSZÉK Jármőtervezés és vizsgálat I. VALÓSZÍNŐSÉGSZÁMÍTÁSI ALAPFOGALMAK Dr. Márialigeti János Budapest 2008

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny

Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Való szí nű sé gi va ltózó, sű rű sé gfű ggvé ny, élószla sfű ggvé ny Szűk elméleti összefoglaló Valószínűségi változó: egy függvény, ami az eseményteret a valós számok halmazára tudja vetíteni. A val.

Részletesebben

Valószínűségszámítás és statisztika a fizikában február 16.

Valószínűségszámítás és statisztika a fizikában február 16. számítás és statisztika a fizikában 2018. február 16. Technikai információk Palla Gergely / pallag@hal.elte.hu / ELTE TTK Biológiai Fizika Tanszék, Északi Tömb, 3.90. szoba Fogadó óra: hétfő, 16-18. Az

Részletesebben

Területi sor Kárpát medence Magyarország Nyugat-Európa

Területi sor Kárpát medence Magyarország Nyugat-Európa Területi sor Terület megnevezése Magyarok száma 2011.01.01. Kárpát medence 13 820 000 Magyarország 10 600 00 Nyugat-Európa 1 340 000 HIV prevalence (%) in adults in Africa, 2005 2.5 Daganatos halálozás

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei Alapfogalmak BIOSTATISZTIKA ÉS INFORMATIKA A valószínűségszámítás elemei Jelenség: minden, ami lényegében azonos feltételek mellett megismételhető, amivel kapcsolatban megfigyeléseket lehet végezni, lehet

Részletesebben

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás, // KURZUS: Matematika II. MODUL: Valószínűség-számítás 21. lecke: A feltételes valószínűség, események függetlensége Tananyag: Kiss Béla - Krebsz Anna: Lineáris algebra, többváltozós függvények, valószínűségszámítás,

Részletesebben

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 0. és 1. gyakorlat 2013/14. tavaszi félév 1. Kombinatorikus módszer ismétlés nélküli ismétléses permutáció k 1!k 2!...k r! n futó beérkezésének sorrendje n golyót ennyiféleképpen

Részletesebben

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy

3. Egy szabályos dobókockával háromszor dobunk egymás után. Legyen A az az esemény, hogy Valószínűségszámítás. zárthelyi dolgozat 009. október 5.. Egy osztályba 3-an járnak. Minden fizikaórán a a többi órától függetlenül a tanár kisorsol egy felelőt, véletlenszerűen, egyenletesen, azaz mindig

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Bizonytalan tudás kezelése

Bizonytalan tudás kezelése Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Bizonytalan tudás kezelése Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz Valószínűségi

Részletesebben

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata.

1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. 1. tétel Halmazok és halmazok számossága. Halmazműveletek és logikai műveletek kapcsolata. HLMZOK halmaz axiomatikus fogalom, nincs definíciója. benne van valami a halmazban szintén axiomatikus fogalom,

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 2. MA3-2 modul. Eseményalgebra

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 2. MA3-2 modul. Eseményalgebra Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 2. MA3-2 modul Eseményalgebra SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció:

3/29/12. Biomatematika 2. előadás. Biostatisztika = Biometria = Orvosi statisztika. Néhány egyszerű definíció: Biostatisztika = Biometria = Orvosi statisztika Biomatematika 2. előadás Néhány egyszerű definíció: A statisztika olyan tudomány, amely a tömegjelenségekkel kapcsolatos tapasztalati törvényeket megfigyelések

Részletesebben

gyakorisága. Az a P szám, amely körül egy esemény relatív gyakorisága ingadozik, az esemény valószínűsége.

gyakorisága. Az a P szám, amely körül egy esemény relatív gyakorisága ingadozik, az esemény valószínűsége. Valószínűségszámítás Egy 10 Ft-os érmét 1000-szer dobtunk fel, és az alábbi táblázatba beleírtuk, hogy bizonyos dobásszámok esetén hányszor fordult elő a fej dobása. Dobások száma 100 200 300 400 500 600

Részletesebben

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik

Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Mérhetőség, σ-algebrák, Lebesgue Stieltjes-integrál, véletlen változók és eloszlásfüggvényeik Az A halmazrendszer σ-algebra az Ω alaphalmazon, ha Ω A; A A A c A; A i A, i N, i N A i A. Az A halmazrendszer

Részletesebben

A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 3. Hibaszámítás, lineáris regresszió Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Hibaszámítás Hibák fajtái, definíciók Abszolút, relatív, öröklött

Részletesebben

1. Kombinatorikai bevezetés

1. Kombinatorikai bevezetés 1. Kombinatorikai bevezetés 1.1. Permutációk Adott n különböző elem ismétlés nélküli permutációján az elemek egy meghatározott sorrendjét értjük. Az n különböző elem összes permutációinak számát P n -nel

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

BIOMATEMATIKA ELŐADÁS

BIOMATEMATIKA ELŐADÁS BIOMATEMATIKA ELŐADÁS 1. Bevezetés, függvények, sorozatok, határérték Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, a biomatematika célja 2 Függvénytani alapfogalmak

Részletesebben

1. Feladatsor. I. rész

1. Feladatsor. I. rész . feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható

Részletesebben

Valószín ségszámítás és statisztika

Valószín ségszámítás és statisztika Valószín ségszámítás és statisztika Informatika BSc, esti tagozat Backhausz Ágnes agnes@cs.elte.hu 2016/2017. tavaszi félév Bevezetés Célok: véletlen folyamatok modellezése; kísérletekb l, felmérésekb

Részletesebben

Matematikai és matematikai statisztikai alapismeretek

Matematikai és matematikai statisztikai alapismeretek Kézirat a Matematikai és matematikai statisztikai alapismeretek című előadáshoz Dr. Győri István NEVELÉSTUDOMÁNYI PH.D. PROGRM 1999/2000 1 1. MTEMTIKI LPOGLMK 1.1. Halmazok Halmazon mindig bizonyos dolgok

Részletesebben

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József

Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Matematika III. 4. : A valószínűségi változó és jellemzői Prof. Dr. Závoti, József Lektor : Bischof, Annamária Ez a modul

Részletesebben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben

2. A ξ valószín ségi változó eloszlásfüggvénye a következ : x 4 81 F (x) = x 4 ha 3 < x 0 különben 1 feladatsor 1 Egy dobozban 20 fehér golyó van Egy szabályos dobókockával dobunk, majd a következ t tesszük: ha a dobott szám 1,2 vagy 3, akkor tíz golyót cserélünk ki pirosra; ha a dobott szám 4 vagy

Részletesebben

Gyakorló feladatok a 2. dolgozathoz

Gyakorló feladatok a 2. dolgozathoz Gyakorló feladatok a. dolgozathoz. Tíz darab tízforintost feldobunk. Mennyi annak a valószínűsége hogy vagy mindegyiken írást vagy mindegyiken fejet kapunk? 9. Egy kör alakú asztal mellett tízen ebédelnek:

Részletesebben

Gyakorlat. Szokol Patricia. September 24, 2018

Gyakorlat. Szokol Patricia. September 24, 2018 Gyakorlat (Geometriai valószínűség, feltételes valószínűség) September 24, 2018 Geometriai valószínűség 1 Az A és B helységet 5 km hosszú telefonvezeték köti össze. A vezeték valahol meghibásodik. A meghibásodás

Részletesebben

Normális eloszlás tesztje

Normális eloszlás tesztje Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra

Részletesebben

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje.

24. tétel A valószínűségszámítás elemei. A valószínűség kiszámításának kombinatorikus modellje. 24. tétel valószíűségszámítás elemei. valószíűség kiszámításáak kombiatorikus modellje. GYORISÁG ÉS VLÓSZÍŰSÉG meyibe az egyes adatok a sokaságo belüli részaráyát adjuk meg (törtbe vagy százalékba), akkor

Részletesebben

Valószínűségszámítás I.

Valószínűségszámítás I. Valószínűségszámítás I. DEFINÍCIÓ: (Véletlen jelenség) Véletlen jelenség alatt olyan jelenséget értünk, amely lefolyását a körülmények (figyelembe vehető okok) nem határoznak meg egyértelműen. DEFINÍCIÓ:

Részletesebben

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n

Számsorok. 1. Definíció. Legyen adott valós számoknak egy (a n ) n=1 = (a 1, a 2,..., a n,...) végtelen sorozata. Az. a n Számsorok 1. Definíció. Legyen adott valós számoknak egy (a n ) = (a 1, a 2,..., a n,...) végtelen sorozata. Az végtelen összeget végtelen számsornak (sornak) nevezzük. Az a n számot a sor n-edik tagjának

Részletesebben

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex

A sorozat fogalma. függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet. az értékkészlet a komplex számok halmaza, akkor komplex A sorozat fogalma Definíció. A természetes számok N halmazán értelmezett függvényeket sorozatoknak nevezzük. Amennyiben az értékkészlet a valós számok halmaza, valós számsorozatról beszélünk, mígha az

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Valószínűség-számítás II.

Valószínűség-számítás II. Valószínűség-számítás II. Geometriai valószínűség: Ha egy valószínűségi kísérletben az események valamilyen geometriai alakzat részhalmazainak felelnek meg úgy, hogy az egyes események valószínűsége az

Részletesebben

A valószínűségszámítás elemei

A valószínűségszámítás elemei A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:

Részletesebben

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg?

AGRÁRMÉRNÖK SZAK Alkalmazott matematika, II. félév Összefoglaló feladatok 2. 4. A síkban 16 db általános helyzetű pont hány egyenest határoz meg? KOMBINATORIKA FELADATSOR 1 1. Hányféleképpen rendezhető egy sorba egy óvodás csoport ha 9 lány és 6 fiú van és a lányokat mindig előre akarjuk állítani? 2. Hány 6-jegyű telefonszám van ahol mind 35-tel

Részletesebben

III. tehát feltéve, hogy P(B)>0 igazak a következők: (1) P( B)=0; (2) P(Ω B)=1; (3) ha C és D egymást kizáró események, akkor

III. tehát feltéve, hogy P(B)>0 igazak a következők: (1) P( B)=0; (2) P(Ω B)=1; (3) ha C és D egymást kizáró események, akkor (matematika I. év, napp.szoc.) VALÓSZÍNŰSÉGSZÁMÍTÁS: feltételes valószínűség, Bayes-tétel, események függetlensége ; 1. oldal (4-ből) 2005. október ELMÉLET: 1.) Analógia halmazok elemszáma és események

Részletesebben

Szerencsejátékok. Elméleti háttér

Szerencsejátékok. Elméleti háttér Szerencsejátékok A következőekben a Szerencsejáték Zrt. által adott játékokat szeretném megvizsgálni. Kiszámolom az egyes lehetőségeknek a valószínűségét, illetve azt, hogy mennyi szelvényt kell ahhoz

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos?

1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? Valószínűségszámítás, földtudomány alapszak, 2015/2016. őszi félév 1. Hányféle sorrendben vonulhat ki a pályára egy focimeccsen a tizenegy kezdő játékos? 2. Két tizenhárom fős vízilabdacsapat mérkőzik

Részletesebben

10. Valószínűségszámítás

10. Valószínűségszámítás . Valószínűségszámítás.. Események A valószínűségszámítás nagyon leegyszerűsítve események bekövetkezésének valószínűségével foglalkozik. Példák: Ha egy játékban egy dobókockával dobunk, akkor a kockadobás

Részletesebben

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva

f(x) vagy f(x) a (x x 0 )-t használjuk. lim melyekre Mivel itt ɛ > 0 tetszőlegesen kicsi, így a a = 0, a = a, ami ellentmondás, bizonyítva 6. FÜGGVÉNYEK HATÁRÉRTÉKE ÉS FOLYTONOSSÁGA 6.1 Függvény határértéke Egy D R halmaz torlódási pontjainak halmazát D -vel fogjuk jelölni. Definíció. Legyen f : D R R és legyen x 0 D (a D halmaz torlódási

Részletesebben

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás

Véletlenszám generátorok és tesztelésük. Tossenberger Tamás Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták)

A 2015/2016. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA (a speciális tanterv szerint haladó gimnazisták) A 205/206. tanévi Országos Középiskolai Tanulmányi Verseny döntő forduló MATEMATIKA III. KATEGÓRIA a speciális tanterv szerint haladó gimnazisták Javítási-értékelési útmutató. feladat Az {,2,...,n} halmaz

Részletesebben

Felte teles való szí nű se g

Felte teles való szí nű se g Felte teles való szí nű se g Szűk elméleti összefoglaló 1. P(A B) = P(AB) P(B) 2. 0 P(A B) 1 3. P(A A) = 1 4. P(A ) = 0 5. egymást kizáró események esetén: P( A I B) = P(A i B). A és B események függetlenek,

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Prof. Dr. Závoti József. Matematika III. 4. MA3-4 modul. A valószínűségi változó és jellemzői Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematika III. 4. MA3-4 modul A valószínűségi változó és jellemzői SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Bayes-tétel és a feltámadás

Bayes-tétel és a feltámadás Bayes-tétel és a feltámadás Kodácsy Tamás 2004. március 21. 1. Feltételes valószínűség A mai valószínűségszámítás általánosan elfogadott elmélete (Kolmogorov-féle elmélet) a valószínűség fogalmát a következő

Részletesebben

Dr. Vincze Szilvia;

Dr. Vincze Szilvia; 2014. szeptember 17. és 19. Dr. Vincze Szilvia; vincze@agr.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia/oktatas/oktatott_targyak/index/index.html 2010/2011-es tanév I. féléves tematika

Részletesebben

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI,

Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár. PhD kurzus. KOKI, Bevezetés a biometriába Dr. Dinya Elek egyetemi tanár PhD kurzus. KOKI, 2015.09.17. Mi a statisztika? A sokaság (a sok valami) feletti áttekintés megszerzése, a sokaságról való információszerzés eszköze.

Részletesebben

12. előadás - Markov-láncok I.

12. előadás - Markov-láncok I. 12. előadás - Markov-láncok I. 2016. november 21. 12. előadás 1 / 15 Markov-lánc - definíció Az X n, n N valószínűségi változók sorozatát diszkrét idejű sztochasztikus folyamatnak nevezzük. Legyen S R

Részletesebben

(6/1) Valószínűségszámítás

(6/1) Valószínűségszámítás (6/1) Valószínűségszámítás 1) Mekkora annak a valószínűsége, hogy szabályos játékkockával páratlan számot dobunk? 2) Egy dobozban 7 piros és 13 zöld golyó van. Ha találomra kihúzunk egyet közülük, akkor

Részletesebben

Metrikus terek, többváltozós függvények

Metrikus terek, többváltozós függvények Metrikus terek, többváltozós függvények 2003.10.15 Készítette: Dr. Toledo Rodolfo és Dr. Blahota István 1. Metrikus terek, metrika tulajdonságai 1.1. A valós, komplex, racionális, természetes és egész

Részletesebben

Bodó Beáta - MATEMATIKA II 1

Bodó Beáta - MATEMATIKA II 1 Bodó Beáta - MATEMATIKA II 1 FELTÉTELES VALÓSZÍNŰSÉG, FÜGGETLENSÉG 1. Legyen P (A) = 0, 7; P (B) = 0, 6 és P (A B) = 0, 5. Határozza meg a következő valószínűségeket! (a) B,V P (A B) 0, 8333 (b) B,V P

Részletesebben

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit.

Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 2. A VALÓS SZÁMOK 2.1 A valós számok aximómarendszere Az R halmazt a valós számok halmazának nevezzük, ha teljesíti az alábbi 3 axiómacsoport axiómáit. 1.Testaxiómák R-ben két művelet van értelmezve, az

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT

MATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,

Részletesebben

2011. szeptember 14. Dr. Vincze Szilvia;

2011. szeptember 14. Dr. Vincze Szilvia; 2011. szeptember 14. Dr. Vincze Szilvia; vincze@fin.unideb.hu https://portal.agr.unideb.hu/oktatok/drvinczeszilvia Első pillantásra hihetetlennek tűnik, hogy egy olyan tiszta és érzelmektől mentes tudomány,

Részletesebben

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk

egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,

Részletesebben

Számelmélet Megoldások

Számelmélet Megoldások Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,

Részletesebben

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli

Gyakorló feladatok valószínűségszámításból végeredményekkel. a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Gyakorló feladatok valószínűségszámításból végeredményekkel a megoldásra ajánlott feladatokat jelöli, a nehezebb feladatokat jelöli Mutassuk meg, hogy tetszőleges A és B eseményekre PA B PA+PB. Mutassuk

Részletesebben