Áramlástan kidolgozott 2016

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Áramlástan kidolgozott 2016"

Átírás

1 Áramlástan kidolgozott ) Ismertesse a lokális és konvektív gyorsulás fizikai jelentését, matematikai leírását, továbbá Navier-Stokes egyenletet!

2 2) Írja fel a kontinuitási egyenletet! Hogyan egyszerűsödik az összefüggés állandó sűrűségű folyadék esetében? Rajzolja fel az abszolút koordináta-rendszerben értelmezett áramvonalakat egy egyenletesen haladó jármű körül! 3) Definiálja a cirkulációt, az örvényességet, továbbá ismertesse a Thomson-tételt!

3 4) Vezesse le a potenciálos örvény sebességmegoszlását! 5) Vezesse le az örvénytranszport egyenlet kétdimenziós alakját!

4 6) Írja fel az örvénytranszport egyenlet általános (vektoros) alakját és mutassa be az egyes tagok fizikai jelentését! 7) Vezesse le az elemi folyadékszakasz evolúciójára vonatkozó Helmholtz-féle analógiát! Milyen következménye van az analógiának síkáramlás esetében?

5 8) Mutassa be az örvénytranszport és a hőtranszport analógiáját kétdimenziós áramlás esetében! 9) Sorolja fel az örvényesség keletkezését és átrendeződését okozó fizikai hatásokat!

6 10) Mi a potenciálos áramlások műszaki jelentősége? Adjon példát az alkalmazási területekre!

7 11) Definiálja a sebességi potenciált és adja meg a létezésének feltételeit! 12) Vezesse le a szivárgó áramlás sebességi potenciálját a Darcy-törvényből kiindulva!

8 13) Hogyan határozható meg a nyomás változása ideális folyadék áramlása és szivárgó áramlás esetében? Adja meg a számításra alkalmas összefüggéseket! 14) Vezesse le a sebességi potenciál meghatározására alkalmas Laplace-egyenletet állandó sűrűségű folyadék áramlás feltételezésével! Írja fel egy (3D) pontforrás sebességterét és a hozzá tartozó sebességi potenciált!

9 15) Definiálja az áramfüggvényt (vektorpotenciált) és igazolja a kontinuitási egyenlet teljesülését! Mutassa be, az általános definíció leszűkítését síkáramlásra! 16) Mutassa be az áramfüggvény fizikai értelmezését síkáramlás esetében! Milyen kapcsolatban áll az áramvonalakkal?

10 17) Vezesse le az áramfüggvény meghatározására alkalmas Laplace-egyenletet! 18) Definiálja a komplex potenciált! Miért előnyös a használata?

11 19) Hogyan határozható meg a komplex sebességvektor a komplex potenciál alapján? 20) Táblázatosan foglalja össze az áramfüggvény a sebességi potenciál és a komplex potenciál legfontosabb tulajdonságait! Létezik-e változó sűrűségű áramlásban, örvényes áramlásban, 3D-ben, hogyan definiáljuk?

12 21) Rajzolja fel jellegre helyesen a potenciálos áramlással jellemezhető térrészt egy autó körüli áramlásban! 22) Írja fel a párhuzamos áramlás komplex potenciálját, határozza meg az áramfüggvényt és rajzolja fel az áramvonalakat!

13 23) Írja fel a potenciálos örvény komplex potenciálját, határozza meg az áramfüggvényt és rajzolja fel az áramvonalakat! Számítsa ki a komplex sebességet és a cirkulációt!

14 24) Írja fel a vonalforrás komplex potenciálját, határozza meg az áramfüggvényt és rajzolja fel az áramvonalakat! Számítsa ki a komplex sebességet és a térfogatáramot! 25) Írja fel a sarok körüli áramlás komplex potenciálját és határozza meg az áramfüggvény értékét! Rajzolja fel az áramvonalakat torlóáramlás és 90 -os sarok körüli áramlás esetében! Mi lesz az n paraméter értéke ezekben az esetekben?

15 26) A sarok körüli áramlás komplex potenciáljának általános alakjából kiindulva vezesse le az áramvonalak alakját torlóáramlás esetében! 27) A forrás komplex potenciáljából kiindulva vezesse le a dipólus komplex potenciálját!

16 28) Határozza meg az áramvonalak alakját egy dipólus körüli áramlási érben! 29) A henger körüli áramlás komplex potenciáljából kiindulva határozza meg az áramfüggvényt és rajzolja fel a henger felületét is tartalmazó torló áramvonalat! Hogyan néz ki a többi áramvonal?

17 30) A henger körüli áramlás komplex potenciáljából vezesse le a felületi sebesség és a nyomástényező összefüggéseit szög függvényében! Jellegre helyesen rajzolja fel a nyomástényező megoszlását a henger felületére!

18

19 31) Írja fel egy forgó henger komplex potenciálját, ábrázolja az áramvonalakat és határozza meg a torlópontok eltolódásának szögét!

20 32) Mit értünk konform leképzés alatt? Adja meg a Zsukovszkij-transzformáció összefüggését! 33) Hol találhatók a Zsukovszij-transzformáció szinguláris pontjai és azok transzformált képei?

21 34) Ábrázolja a különféle módon eltolt középpontú kör Zsukovszkij-transzformációval nyert képeit!

22

23 35) Mit értünk Kutta-feltétel alatt és hogyan kell megválasztanunk a forgó henger körüli áramlás komplex potenciálját, hogy teljesüljön a Kutta-feltétel? 36) Vezesse le egy ívelt lap felhajtóerő tényezőjének becslésére alkalmas, kis értékű állásszög és íveltég esetében érvényes összefüggést!

24 37) Mit értünk egy olajkút esetében vízkúposodás alatt? Mi az oka, és milyen hatása van a jelenségnek a kitermelésre?

25 38) Milyen áramlást célszerű kialakítani ellennyomó víztárolók esetében? Rajzolja fel jellegre helyesen az optimális belépő sebességprofilt zongora alakú tároló esetén!

26 39) Írja le röviden a határréteggel kapcsolatos négy alapjelenséget! 40) Milyen erők egyensúlya jellemzi a határréteg külső részét? Vezesse le a dimenziótlan határréteg vastagság és a hosszal számolt Reynolds-szám kapcsolatát!

27 41) Milyen kapcsolat áll fenn a hosszal és a határréteg vastagsággal számított Reynolds-számok között? Definiálja a kritikus Reynolds-számot! 42) Igazolja, hogy a határréteg vastagsággal számított kritikus Reynolds-szám értékei közel esnek egymáshoz síklap feletti határréteg és kör keresztmetszetű csőben kialakuló határréteg esetében!

28 43) A síkáramlásra felírt kontinuitási egyenletből és a Navier-Stokes egyenletből kiindulva vezesse le a határréteg áramlás alapegyenleteit! Milyen kapcsolat áll fenn a határrétegbeli nyomás gradiens és a külső áramlás sebessége között?

29 44) Ismertesse a határréteg egyenlet Reynolds-számtól független alakját! Adjon alkalmazási példákat!

30 45) Diszkretizálja a határréteg egyenletet explicit módszer alkalmazásával! Ismertesse a megoldási sorrendet! Milyen hátránnyal jár az explicit módszer és mennyiben tér el az implicit módszer?

31 46) Ismertesse a határréteg tranzíció négy lehetséges okát és mutassa be a tranzíció folyamatát!

32 47) Ismertesse a Reynolds-átlagolás módszerét, a mezőváltozók felbontását és a Reynoldsátlagolt Navier-Stokes egyenletet! Írja fel a Reynolds-feszültségtenzor komponenseit!

33 48) Ismertesse a keveredési úthossz modellt! Hogyan fejezhető ki a turbulens viszkozitás a keveredési úthossz modell alapján? 49) Milyen rétegekből áll a turbulens határréteg? Mely rétegekben tekinthető állandónak a csúsztatófeszültség?

34 50) Vezesse le viszkózus alapréteg és a logaritmikus réteg sebességmegoszlását leíró dimenzió nélküli profilokat! y+ értéke milyen tartományba esik ezekben a rétegekben? 51) A határréteg egyenlet numerikus megoldása esetében hogyan alkalmazható a keveredési úthossz modell? Ismertesse az Escudier-korrelációt!

35 52) Adja meg a hőtranszportot és az anyagátadást leíró transzportegyenletek stacionárius, turbulens határrétegre alkalmazható alakjait. Definiálja a hőmérsékletvezetési tényezőt, a Prandtl-számot és a Schmidt-számot! 53) Definiálja az ellenállás tényezőt és a felhajtóerő tényezőt, megadva az erők irányát!

36 54) Rajzolja fel jellegre helyesen a felhajtóerő tényező és az ellenállás tényező változását állásszög függvényében! Hol található ezen a diagramon az üzemi pont fel és leszálláskor, valamint utazósebességnél? Mi a két legfontosabb aerodinamikai követelmény a repülőgépek szárnyprofiljaival szemben? 55) Mikor célszerű késleltetni a határréteg tranzícióját és milyen módszerekkel érhető el? Ránézésre hogyan különböztethetők meg a lamináris szárnyprofilok a hagyományos szárnyprofiloktól?

37 56) Hogyan késleltethető a határréteg leválása repülőgép szárnyak esetében? Mutasson be három lehetséges módszert!

38 57) Miért fontos a közúti járművek homlokfelületének lekerekítése? Mutassa be rajzon az áramvonalak alakját és az erők irányát! 58) Miért válik le a határréteg a homlokfali lekerekítés után? Hogyan csökkenthető a leválási buborék mérete?

39 59) Rajzon szemléltesse az autóbuszok esetében alkalmazható homlok-spoilert és a körülötte kialakuló áramvonalakat! Mi a megoldás gyakorlati előnye a lekerekítéssel szemben? 60) Jellegre helyesen rajzolja fel, hogyan függ a kúpos testek ellenállása a kúpszögtől! Miből adódik az erő változása? Hogyan alkalmazható ez a tapasztalat járművek ellenállásának csökkentésére?

40 61) Milyen hossz esetében legkisebb egy tengely irányában megfújt henger ellenállás tényezője? Milyen hatások okozzák az ellenállás csökkenését? Rajzolja fel az áramvonalakat! 62) Rajzolja fel egy szabadsugár áramvonalait és a lassuló szakasz sebességprofilját! Mik a szabadsugár áramlás fő jellemzői?

41 63) Hogyan számítható az impulzusáram hengeres szabadsugár és sík szabadsugár esetében? Hogyan változik a térfogatáram és maximális sebesség a fúvókától mért távolság függvényében? 64) Ismertesse a Coanda-effektust! Mi okozza? Adjon alkalmazási példát!

42 65) Rajzolja fel egy oldalbefúvásos kapulégfüggöny szerkezetét és a kialakuló áramvonalakat! Rajzolja fel az impulzusáramok és a nyomásból származó erő irányát! Milyen kapcsolat adódik a nyomáskülönbség, a sebesség és a fő méretek között az impulzustétel alapján? 66) Definiálja a légfüggönyök esetében alkalmazott dimenziótlan nyomáskülönbséget, szélességi paramétert és zárási tényezőt! Hogyan függ a teljes záráshoz tartozó dimenziótlan nyomáskülönbség a szélességi paramétertől az egyszerű elmélet alapján? Jellegre helyesen mutassa be, hogyan változik a zárási tényező a dimenziótlan nyomáskülönbség függvényében!

43

Henger körüli áramlás Henger körüli áramlás. Henger körüli áramlás. ρ 2. R z. R z. = 2c. c A. = 4c. c p. = c cos. y/r 1.5.

Henger körüli áramlás Henger körüli áramlás. Henger körüli áramlás. ρ 2. R z. R z. = 2c. c A. = 4c. c p. = c cos. y/r 1.5. Henger körüli áramlás y/r.5 x/r.5 3 3 R w z + z R R iϑ e r R R z ( os ϑ + i sin ϑ ) Henger körüli áramlás ( os ϑ i sin ϑ ) r R + [ ϑ + sin ϑ ] ( ) ( os ) r R r R os ϑ + os ϑ + sin ϑ 444 3 r R 4 r [ os

Részletesebben

TARTALOMJEGYZÉK Bevezetés... 9 Köszönetnyilvánítás A tankönyv és használata FEJEZET: A FOLYADÉKOK SAJÁTOSSÁGAI, AZ ÁRAMLÁSTANBAN

TARTALOMJEGYZÉK Bevezetés... 9 Köszönetnyilvánítás A tankönyv és használata FEJEZET: A FOLYADÉKOK SAJÁTOSSÁGAI, AZ ÁRAMLÁSTANBAN TARTALOMJEGYZÉK Bevezetés... 9 Köszönetnyilvánítás... 10 A tankönyv és használata... 11 1. FEJEZET: A FOLYADÉKOK SAJÁTOSSÁGAI, AZ ÁRAMLÁSTANBAN ALKALMAZOTT FIZIKAI MENNYISÉGEK ÉS LEÍRÁSUK... 19 1.1. lecke:

Részletesebben

BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H

BMEGEÁTAT01-AKM1 ÁRAMLÁSTAN (DR.SUDA-J.M.) 2.FAKZH AELAB (90MIN) 18:45H BMEGEÁTAT0-AKM ÁRAMLÁSTAN (DR.SUDA-J.M.).FAKZH 08..04. AELAB (90MIN) 8:45H AB Név: NEPTUN kód:. Aláírás: ÜLŐHELY sorszám PONTSZÁM: 50p / p Toll, fényképes igazolvány, számológépen kívül más segédeszköz

Részletesebben

Az ( ) tankönyv használata

Az ( ) tankönyv használata Az ( ) tankönyv használata Ez a füzet az Áramlástan alapjai tankönyv. kiadása használatához ad segítséget. A táblázat első három oszlopa fejezet, lecke, pont felosztásban és az oldalszámok megadásával

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Hőkerék készítése házilag Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért

Részletesebben

Áramlások fizikája

Áramlások fizikája Bene Gyula Eötvös Loránd Tudományegyetem, Elméleti Fizikai Tanszék 7 Budapest, Pázmány Péter sétány /A 6. Előadás 6.. smétlés Példák a konform leképezések alkalmazására: áramlás sarok/él körül, áramlás

Részletesebben

Lajos T.: Az ÁRAMLÁSTAN ALAPJAI tankönyv használata

Lajos T.: Az ÁRAMLÁSTAN ALAPJAI tankönyv használata Lajos T.: Az ÁRAMLÁSTAN ALAPJAI tankönyv használata Ez a füzet az Áramlástan alapjai tankönyv használatához ad segítséget. A táblázat első három oszlopa, fejezet, lecke és pont bontásban az oldalszámok

Részletesebben

ÁRAMVONALAS TEST, TOMPA TEST

ÁRAMVONALAS TEST, TOMPA TEST ÁRAMVONALAS TEST, TOMPA TEST Súrlódásmentes áramlás Henger F 0 Súrlódásos áramlás F 0 Gömb ÁRAMVONALAS ÉS TOMPA TESTEK ÖSSZEHASONLÍTÁSA Áramvonalas testek: az áramvonalak követik a test felületét, a nyomáseloszlásból

Részletesebben

Folyadékok és gázok áramlása

Folyadékok és gázok áramlása Folyadékok és gázok áramlása Gázok és folyadékok áramlása A meleg fűtőtest vagy rezsó felett a levegő felmelegszik és kitágul, sűrűsége kisebb lesz, mint a környezetéé, ezért felmelegedik. A folyadékok

Részletesebben

SZAKDOLGOZAT VIRÁG DÁVID

SZAKDOLGOZAT VIRÁG DÁVID SZAKDOLGOZAT VIRÁG DÁVID 2010 Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék SZÁRNY KÖRÜLI TURBULENS ÁRAMLÁS NUMERIKUS SZIMULÁCIÓJA NYÍLT FORRÁSKÓDÚ SZOFTVERREL VIRÁG

Részletesebben

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE

HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE HÍDTARTÓK ELLENÁLLÁSTÉNYEZŐJE Csécs Ákos * - Dr. Lajos Tamás ** RÖVID KIVONAT A Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke megbízta a BME Áramlástan Tanszékét az M8-as

Részletesebben

H08 HATÁRRÉTEG SEBESSÉGPROFIL MÉRÉSE TÉGLALAP KERESZTMETSZETŰ CSATORNÁBAN

H08 HATÁRRÉTEG SEBESSÉGPROFIL MÉRÉSE TÉGLALAP KERESZTMETSZETŰ CSATORNÁBAN H08 HATÁRRÉTEG SEBESSÉGPROFIL MÉRÉSE TÉGLALAP KERESZTMETSZETŰ CSATORNÁBAN 1. Elméleti bevezető: Határréteg alatt a viszkózus áramló folyadéknak azt a szilárd felület melletti rétegét értjük, amelyen belül

Részletesebben

VIZSGA ÍRÁSBELI FELADATSOR

VIZSGA ÍRÁSBELI FELADATSOR ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI

Részletesebben

Tájékoztató. Értékelés Összesen: 60 pont

Tájékoztató. Értékelés Összesen: 60 pont A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Az úszás biomechanikája

Az úszás biomechanikája Az úszás biomechanikája Alapvető összetevők Izomerő Kondíció állóképesség Mozgáskoordináció kivitelezés + Nem levegő, mint közeg + Izmok nem gravitációval szembeni mozgása + Levegővétel Az úszóra ható

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

1.2 Folyadékok tulajdonságai, Newton-féle viszkozitási törvény

1.2 Folyadékok tulajdonságai, Newton-féle viszkozitási törvény ÁRAMLÁSTAN Dr Lajos Tamás: Az áramlástan alapjai című jegyzet, valamintszlivka F-Bencze F-Kristóf G: Áramlástan példatárábrái és szövege alapján készült Összeállította dr Szlivka Ferenc 1 Az áramlástan

Részletesebben

Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát!

Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát! Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát! Írja fel az általános transzportegyenletet differenciál alakban! Milyen mennyiségeket képviselhet

Részletesebben

Kérdések. Sorolja fel a PC vezérlések típusait! (angol rövidítés + angol név + magyar név) (4*0,5p + 4*1p + 4*1p)

Kérdések. Sorolja fel a PC vezérlések típusait! (angol rövidítés + angol név + magyar név) (4*0,5p + 4*1p + 4*1p) Sorolja fel az irányító rendszerek fejlődésének menetét! (10p) Milyen tulajdonságai és feladatai vannak a pneumatikus irányító rendszereknek? Milyen előnyei és hátrányai vannak a rendszer alkalmazásának?

Részletesebben

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018. Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok

Részletesebben

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye

Folyadékok áramlása Folyadékok. Folyadékok mechanikája. Pascal törvénye Folyadékok áramlása Folyadékok Folyékony halmazállapot nyíróerő hatására folytonosan deformálódik (folyik) Folyadék Gáz Plazma Talián Csaba Gábor PTE ÁOK, Biofizikai Intézet 2012.09.12. Folyadék Rövidtávú

Részletesebben

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242ML)

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242ML) TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242ML) ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2012/13. 1 Tartalomjegyzék

Részletesebben

H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA

H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA H01 TEHERAUTÓ ÉS BUSZMODELL SZÉLCSATORNA VIZSGÁLATA 1. A mérés célja A mérési feladat moduláris felépítésű járműmodellen a c D ellenállástényező meghatározása különböző kialakítások esetén, szélcsatornában.

Részletesebben

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006

Folyadékáramlás. Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 14. Előadás Folyadékáramlás Kapcsolódó irodalom: Orvosi biofizika (szerk. Damjanovich Sándor, Fidy Judit, Szöllősi János) Medicina Könyvkiadó, Budapest, 2006 A biofizika alapjai (szerk. Rontó Györgyi,

Részletesebben

F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,,

F. F, <I> F,, F, <I> F,, F, <J> F F, <I> F,, F,=A4>, ahol A arányossági tényező: A= 0.06 ~, oszt as cl> a műszer kitérése. A F, = f(f,,) függvénykapcsolatot felrajzolva (a mérőpontok közé egyenes huzható) az egyenes iránytaogense a mozgó surlódási

Részletesebben

PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám

PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám Kérem, þ jellel jelölje be képzését! AKM1 VBK Környezetmérnök BSc AT01 Ipari termék- és formatervező BSc AM01 Mechatronikus BSc AM11 Mechatronikus BSc ÁRAMLÁSTAN 2. FAK.ZH - 2013.0.16. 18:1-19:4 KF81 Név:.

Részletesebben

Hidrosztatika, Hidrodinamika

Hidrosztatika, Hidrodinamika Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek

Részletesebben

A mikroskálájú modellek turbulencia peremfeltételeiről

A mikroskálájú modellek turbulencia peremfeltételeiről A mikroskálájú modellek turbulencia peremfeltételeiről Adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Áramlástan Tanszék 27..23. 27..23. / 7 Általános célú CFD megoldók alkalmazása

Részletesebben

Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver

Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver Szennyezőanyagok terjedésének numerikus szimulációja, MISKAM célszoftver 1. A numerikus szimulációról általában A szennyeződés-terjedési modellek numerikus megoldása A szennyeződés-terjedési modellek transzportegyenletei

Részletesebben

Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai

Mechanika IV.: Hidrosztatika és hidrodinamika. Vizsgatétel. Folyadékok fizikája. Folyadékok alaptulajdonságai 016.11.18. Vizsgatétel Mechanika IV.: Hidrosztatika és hidrodinamika Hidrosztatika és hidrodinamika: hidrosztatikai nyomás, Pascaltörvény. Newtoni- és nem-newtoni folyadékok, áramlástípusok, viszkozitás.

Részletesebben

N=20db. b) ÜZEMMELEG ÁLLAPOT MOTORINDÍTÁS UTÁN (TÉLEN)

N=20db. b) ÜZEMMELEG ÁLLAPOT MOTORINDÍTÁS UTÁN (TÉLEN) ÍRÁSBELI VIZSGA FELADATSOR NINCS TESZT, PÉLDASOR (120 perc) Az áramlástan alapjai BMEGEÁTAKM1 Környezetmérnök BSc képzés VBK (ea.: Dr. Suda J.M.) VIZSGA ÍRÁSBELI FELADATSOR EREDMÉNYHIRDETÉS és SZÓBELI

Részletesebben

2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez.

2. rész PC alapú mérőrendszer esetén hogyan történhet az adatok kezelése? Írjon pár 2-2 jellemző is az egyes esetekhez. Méréselmélet és mérőrendszerek (levelező) Kérdések - 2. előadás 1. rész Írja fel a hiba fogalmát és hogyan számítjuk ki? Hogyan számítjuk ki a relatív hibát? Mit tud a rendszeres hibákról és mi az okozója

Részletesebben

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon

Részletesebben

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M)

TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M) TRANSZPORTFOLYAMATOK ÉS SZIMULÁCIÓJUK (MAKKEM 242M) ANYAGMÉRNÖK MESTERKÉPZÉS TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2012/13. 1 Tartalomjegyzék

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Elektromágneses hullámok

Elektromágneses hullámok Bevezetés a modern fizika fejezeteibe 2. (a) Elektromágneses hullámok Utolsó módosítás: 2015. október 3. 1 A Maxwell-egyenletek (1) (2) (3) (4) E: elektromos térerősség D: elektromos eltolás H: mágneses

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám:

Ventilátor (Ve) [ ] 4 ahol Q: a térfogatáram [ m3. Nyomásszám: Ventilátor (Ve) 1. Definiálja a következő dimenziótlan számokat és írja fel a képletekben szereplő mennyiségeket: φ (mennyiségi szám), Ψ (nyomásszám), σ (fordulatszám tényező), δ (átmérő tényező)! Mennyiségi

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!

Részletesebben

Függvények Megoldások

Függvények Megoldások Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST

DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus

Részletesebben

Az Áramlástan Tanszék szélcsatornáinak korábbi és jelenlegi alkalmazásai

Az Áramlástan Tanszék szélcsatornáinak korábbi és jelenlegi alkalmazásai Az Áramlástan Tanszék szélcsatornáinak korábbi és jelenlegi alkalmazásai Mőegyetem Áramlástan Tanszék 2007 Motorkerékpárra és motorosra ható áramlási ellenállás erı mérése Kutatók éjszakája 2008 Mőegyetem

Részletesebben

Fényképezőgépet a mérőcsoport biztosít. Lehetőség van a mérőcsoport által készített vezetőfülke és terelő modellek vizsgálatára

Fényképezőgépet a mérőcsoport biztosít. Lehetőség van a mérőcsoport által készített vezetőfülke és terelő modellek vizsgálatára A Hő- és áramlástan tantárgy áramlástan laboratóriumi méréseinek elméleti háttere (Az áramlástan alapjai tankönyv Hő és Áramlástan mérésekhez kapcsolódó fejezetei) A nagy recirkulációs és az NPL szélcsatornában

Részletesebben

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások ) Egyenletek, egyenletrendszerek, egyenlőtlenségek - megoldások Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások a) Oldja meg a valós számok halmazán az alábbi egyenletet! = 6 (5 pont) b) Oldja

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Nagy recirkulációs szélcsatorna A Mérési feladat Nyíróréteg szabályozás vezetőfülke, raktér kölcsönhatás vizsgálata tagolt teherautó modellen.

Nagy recirkulációs szélcsatorna A Mérési feladat Nyíróréteg szabályozás vezetőfülke, raktér kölcsönhatás vizsgálata tagolt teherautó modellen. A Hő- és áramlástan tantárgy áramlástan laboratóriumi méréseinek elméleti háttere (Az áramlástan alapjai tankönyv Hő és Áramlástan mérésekhez kapcsolódó fejezetei) A nagy recirkulációs és az NPL szélcsatornában

Részletesebben

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx

x 2 e x dx c) (3x 2 2x)e 2x dx x sin x dx f) x cosxdx (1 x 2 )(sin 2x 2 cos 3x) dx e 2x cos x dx k) e x sin x cosxdx x ln x dx n) (2x + 1) ln 2 x dx Integrálszámítás II. Parciális integrálás. g) i) l) o) e ( + )(e e ) cos h) e sin j) (sin 3 cos) m) arctg p) arcsin e (3 )e sin f) cos ( )(sin cos 3) e cos k) e sin cos ln n) ( + ) ln. e 3 e cos 3 3 cos

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

KÖZÚTI JÁRMŰVEK FORGÓ KEREKE KÖRÜLI ÁRAMLÁS JELLEMZŐI, MÓDSZER KIDOLGOZÁSA ÁRAMLÁSOK ELEMZÉSÉRE. TÉZISFÜZET Ph.D. fokozat elnyerésére

KÖZÚTI JÁRMŰVEK FORGÓ KEREKE KÖRÜLI ÁRAMLÁS JELLEMZŐI, MÓDSZER KIDOLGOZÁSA ÁRAMLÁSOK ELEMZÉSÉRE. TÉZISFÜZET Ph.D. fokozat elnyerésére BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GÉPÉSZMÉRNÖKI KAR ÁRAMLÁSTAN TANSZÉK Régert Tamás KÖZÚTI JÁRMŰVEK FORGÓ KEREKE KÖRÜLI ÁRAMLÁS JELLEMZŐI, MÓDSZER KIDOLGOZÁSA ÁRAMLÁSOK ELEMZÉSÉRE TÉZISFÜZET

Részletesebben

Áramlástan feladatgyűjtemény. 4. gyakorlat Bernoulli-egyenlet

Áramlástan feladatgyűjtemény. 4. gyakorlat Bernoulli-egyenlet Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához. gyakorlat Bernoulli-egyenlet Összeállította: Lukács Eszter Dr. Istók Balázs Dr. Benedek

Részletesebben

B) A VÍZ ALATTI SZÁRNYAK. 1. Bevezetés

B) A VÍZ ALATTI SZÁRNYAK. 1. Bevezetés Jereb Gábor Szárnyas Hajók Új technika sorozat B) A VÍZ ALATTI SZÁRNYAK 1. Bevezetés A vízkiszorításos hajók körük kialakuló áramlás képe elméletileg csak nehezen követhető nyomon a hajótestek bonyolult

Részletesebben

10. Valóságos folyadékok áramlása

10. Valóságos folyadékok áramlása 10. Valóságos folyadékok áramlása 10.1. Bernoulli egyenlet valóságos folyadékoknál Valóságos folyadéknál a súrlódás miatt veszteség keletkezik, melyet p v veszünk figyelembe. Ábrázolva az energiákat az

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

Propeller, szélturbina, axiális keverő működési elve

Propeller, szélturbina, axiális keverő működési elve Propeller, szélturbina, axiális keverő működési elve A propeller egy axiális átömlésű járókerék, amit tolóerő létesítésére használnak repülőgépek, hajók hajtására. A propeller nyugvó folyadékban halad

Részletesebben

2. mérés Áramlási veszteségek mérése

2. mérés Áramlási veszteségek mérése . mérés Áramlási veszteségek mérése A mérésről készült rövid videó az itt látható QR-kód segítségével: vagy az alábbi linken érhető el: http://www.uni-miskolc.hu/gepelemek/tantargyaink/00b_gepeszmernoki_alapismeretek/.meres.mp4

Részletesebben

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség

Szilárd testek rugalmas alakváltozásai Nyú y j ú tás y j Hooke törvény, Hooke törvén E E o Y un un modulus a f eszültség ffeszültség Kontinuumok mechanikája Szabó Gábor egyetemi tanár SZTE Optikai Tanszék Szilárd testek rugalmas alakváltozásai Nyújtás l l = l E F A Hooke törvény, E Young modulus σ = F A σ a feszültség l l l = σ E Szilárd

Részletesebben

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) .

Szabadsugár. A fenti feltételekkel a folyadék áramlását leíró mozgásegyenlet és a kontinuitási egyenlet az alábbi egyszerű alakú: (1) . Szabadsugár Tekintsük az alábbi ábrán látható b magasságú résből kiáramló U sebességű sugarat. A résből kiáramló és a függőleges fal melletti térben lévő foladék azonos. A rajz síkjára merőleges iránban

Részletesebben

Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével

Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével GANZ ENGINEERING ÉS ENERGETIKAI GÉPGYÁRTÓ KFT. Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével Készítette: Bogár Péter Háznagy Gergely Egyed Csaba Zombor Csaba

Részletesebben

Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát!

Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát! Írja fel az általános transzportegyenlet integrál alakban! Definiálja a konvektív és konduktív fluxus fogalmát! Írja fel az általános transzportegyenletet differenciál alakban! Milyen mennyiségeket képviselhet

Részletesebben

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati

mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati ϕ t + j ϕ = 0 mérlegegyenlet. ϕ - valamely SKALÁR additív (extenzív) mennyiség térfogati sűrűsége j ϕ - a ϕ-hez tartozó áramsűrűség j ϕ = vϕ + j rev + j irr vϕ - advekció j rev - egyéb reverzibilis áram

Részletesebben

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH)

Simított részecskedinamika Smoothed Particle Hydrodynamics (SPH) Smoothed Particle Hydrodynamics (SPH) Áramlások numerikus modellezése II. Tóth Balázs BME-ÉMK Vízépítési és Vízgazdálkodási Tanszék Numerikus módszerek Osztályozás A numerikus sémák két csoportosítási

Részletesebben

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik.

Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Felületi feszültség: cseppfolyós-gáz határfelületen a vonzerő kiegyensúlyozatlan: rugalmas hártyaként viselkedik. Mérése: L huzalkeret folyadékhártya mozgatható huzal F F = L σ két oldala van a hártyának

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

NUMERIKUS MÓDSZEREK ALKALMAZÁSA SZÁRNYPROFILOK ÉS SZÁRNYAK AERODINAMIKAI JELLEMZŐINEK MEGHATÁROZÁSÁRA BEVEZETÉS

NUMERIKUS MÓDSZEREK ALKALMAZÁSA SZÁRNYPROFILOK ÉS SZÁRNYAK AERODINAMIKAI JELLEMZŐINEK MEGHATÁROZÁSÁRA BEVEZETÉS Bauer Péter NUMERIKUS MÓDSZEREK ALKALMAZÁSA SZÁRNYPROFILOK ÉS SZÁRNYAK AERODINAMIKAI JELLEMZŐINEK MEGHATÁROZÁSÁRA Ezúton mondok köszönetet Dr. Gausz Tamásnak, a Budapesti Műszaki és Gazdaságtudományi Egyetem,

Részletesebben

AERODINAMIKA KÁLLAI RUDOLF

AERODINAMIKA KÁLLAI RUDOLF AERODINAMIKA KÁLLAI RUDOLF A LEVEGŐ, MINT ANYAG Gázok elegye Taszító erő: kitölti a teret Összenyomható A Föld gravitációs ereje tartja lekötve Sűrűsége, nyomása a magassággal változik A légkör határa

Részletesebben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben

Áramlástan feladatgyűjtemény. 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 6. gyakorlat Bernoulli-egyenlet instacionárius esetben Összeállította: Lukács Eszter Dr.

Részletesebben

A CFD elemzés minőségéről és megbízhatóságáról. Modell fejlesztési folyamata. A közelítési rendszer. Dr. Kristóf Gergely Október 11.

A CFD elemzés minőségéről és megbízhatóságáról. Modell fejlesztési folyamata. A közelítési rendszer. Dr. Kristóf Gergely Október 11. A CFD elemzés minőségéről és megbízhatóságáról Dr. Kristóf Gergely 2016. Október 11. Modell fejlesztési folyamata I. Ellenőrzés: Jól oldjuk-e meg a leíró egyenleteket? Teljesülnek-e az elvárt konvergencia

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás

Áramlástan feladatgyűjtemény. 3. gyakorlat Hidrosztatika, kontinuitás Áramlástan feladatgyűjtemény Az energetikai mérnöki BSc és gépészmérnöki BSc képzések Áramlástan című tárgyához 3. gyakorlat Hidrosztatika, kontinuitás Összeállította: Lukács Eszter Dr. Istók Balázs Dr.

Részletesebben

Folyami hidrodinamikai modellezés

Folyami hidrodinamikai modellezés Folyami hidrodinamikai modellezés Dr. Krámer Tamás egyetemi docens BME Vízépítési és Vízgazdálkodási Tanszék Numerikus modellezés 0D 1D 2D 3D Alacsony Kézi számítások Részletesség és pontosság Bonyolultság

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

Nyújtás. Ismétlés. Hooke-törvény. Harántösszehúzódás: nyújtásnál/összenyomásnál a térfogat növekszik/csökken

Nyújtás. Ismétlés. Hooke-törvény. Harántösszehúzódás: nyújtásnál/összenyomásnál a térfogat növekszik/csökken Ismétlés Mozgó vonatkoztatási rendszerek Szilárd testek rugalmassága. (nyújtás és összenyomás, hajlítás, nyírás, csavarás) A rugalmassági állandók közötti összefüggések. Szilárd testek viselkedése az arányossági

Részletesebben

Áramlástechnikai mérések

Áramlástechnikai mérések Áramlástehnikai mérések Mérés Prandtl- ső segítségével. Előző tanulmányaikból ismert: A kontinuitás elve: A A Ahol: - a közeg sebessége az. pontban - a közeg sebessége a. pontban A, A - keresztmetszetek

Részletesebben

Folyadékok és gázok mechanikája

Folyadékok és gázok mechanikája Folyadékok és gázok mechanikája Hidrosztatikai nyomás A folyadékok és gázok közös tulajdonsága, hogy alakjukat szabadon változtatják. Hidrosztatika: nyugvó folyadékok mechanikája Nyomás: Egy pontban a

Részletesebben

MÉRÉSI JEGYZŐKÖNYV M4. számú mérés Testek ellenállástényezőjének mérése NPL típusú szélcsatornában

MÉRÉSI JEGYZŐKÖNYV M4. számú mérés Testek ellenállástényezőjének mérése NPL típusú szélcsatornában Tanév,félév 2010/2011 1. Tantárgy Áramlástan GEATAG01 Képzés egyetem x főiskola Mérés A B C Nap kedd 12-14 x Hét páros páratlan A mérés dátuma 2010.??.?? A MÉRÉSVEZETŐ OKTATÓ TÖLTI KI! DÁTUM PONTSZÁM MEGJEGYZÉS

Részletesebben

Örvényszivattyú A feladat

Örvényszivattyú A feladat Örvényszivattyú A feladat 1. Adott n fordulatszám mellett határozza meg a gép jellemző fordulatszámát az optimális üzemi pont mérésből becsült értéke alapján: a) n = 1700/min b) n = 1800/min c) n = 1900/min

Részletesebben

Ellenáramú hőcserélő

Ellenáramú hőcserélő Ellenáramú hőcserélő Elméleti összefoglalás, emlékeztető A hőcserélő alapvető működésével és az egyszerűsített számolásokkal a Vegyipari műveletek. tárgy keretében ismerkedtek meg. A mérés elvégzéséhez

Részletesebben

KOVÁCS BÉLA, MATEMATIKA II.

KOVÁCS BÉLA, MATEMATIKA II. KOVÁCS BÉLA MATEmATIkA II 6 VI TÉRGÖRbÉk 1 Alapvető ÖSSZEFÜGGÉSEk A térgörbe (1) alakú egyenletével írható le Ez a vektoregyenlet egyenértékű az (2) skaláris egyenletrendszerrel A térgörbe három nevezetes

Részletesebben

A diplomaterv keretében megvalósítandó feladatok összefoglalása

A diplomaterv keretében megvalósítandó feladatok összefoglalása A diplomaterv keretében megvalósítandó feladatok összefoglalása Diplomaterv céljai: 1 Sclieren résoptikai módszer numerikus szimulációk validálására való felhasználhatóságának vizsgálata 2 Lamináris előkevert

Részletesebben

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok

TÉRFOGATÁRAM MÉRÉSE. Mérési feladatok Készítette:....kurzus Dátum:...év...hó...nap TÉRFOGATÁRAM MÉRÉSE Mérési feladatok 1. Csővezetékben áramló levegő térfogatáramának mérése mérőperemmel 2. Csővezetékben áramló levegő térfogatáramának mérése

Részletesebben

Vérkeringés. A szív munkája

Vérkeringés. A szív munkája Vérkeringés. A szív munkája 2014.11.04. Keringési Rendszer Szív + erek (artériák, kapillárisok, vénák) alkotta zárt rendszer. Funkció: vér pumpálása vér áramlása az erekben oxigén és tápanyag szállítása

Részletesebben

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.

Matematika szigorlat, Mérnök informatikus szak I máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt. Matematika szigorlat, Mérnök informatikus szak I. 2009. máj. 12. Név: Nept. kód: Idő: 1. f. 2. f. 3. f. 4. f. 5. f. 6. f. Össz.: Oszt.: 180 perc 0-49 pont: elégtelen, 50-61 pont: elégséges, 62-73 pont:

Részletesebben

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István

Szent István Egyetem FIZIKA. Folyadékok fizikája (Hidrodinamika) Dr. Seres István Szent István Egyetem (Hidrodinamika) Dr. Seres István Hidrosztatika Ideális folyadékok áramlása Viszkózus folyadékok áramlása Felületi feszültség fft.szie.hu 2 Hidrosztatika Nyomás: p F A Mértékegysége:

Részletesebben

Hő- és áramlástani feladatok numerikus modellezése

Hő- és áramlástani feladatok numerikus modellezése Foglalkoztatáspolitikai és Munkaügyi Minisztérium Humánerőforrás-fejlesztés Operatív Program Dr. Kalmár László Dr. Baranyi László Dr. Könözsy László Hő- és áramlástani feladatok numerikus modellezése Készült

Részletesebben

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4

cos 2 (2x) 1 dx c) sin(2x)dx c) cos(3x)dx π 4 cos(2x) dx c) 5sin 2 (x)cos(x)dx x3 5 x 4 +11dx arctg 11 (2x) 4x 2 +1 π 4 Integrálszámítás I. Végezze el a következő integrálásokat:. α, haα sin() cos() e f) a sin h) () cos ().. 5 4 ( ) e + 4 sin h) (+) sin() sin() cos() + f) 5 i) cos ( +) 7 4. 4 (+) 6 4 cos() 5 +7 5. ( ) sin()cos

Részletesebben

7.GYAKORLAT (14. oktatási hét)

7.GYAKORLAT (14. oktatási hét) 7.GYAKORLAT (14. oktatási hét) Lehetséges témakörök a 14. heti 7. gyakorlatra: - Gyakorlati anyag: az áramlások hasonlósága, a hidraulika és az áramlásba helyezett testekre ható erő témakörökre gyakorló

Részletesebben

Modern Fizika Labor. 2. Elemi töltés meghatározása

Modern Fizika Labor. 2. Elemi töltés meghatározása Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely

Részletesebben

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q

0,00 0,01 0,02 0,03 0,04 0,05 0,06 Q 1. Az ábrában látható kapcsolási vázlat szerinti berendezés két üzemállapotban működhet. A maximális vízszint esetében a T jelű tolózár nyitott helyzetben van, míg a minimális vízszint esetén az automatikus

Részletesebben

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak?

1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? Ellenörző kérdések: 1. előadás 1/5 1. előadás 1. Egy lineáris hálózatot mikor nevezhetünk rezisztív hálózatnak és mikor dinamikus hálózatnak? 2. Mit jelent a föld csomópont, egy áramkörben hány lehet belőle,

Részletesebben

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének 6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük

Részletesebben

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag

VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag VIK A1 Matematika BOSCH, Hatvan, 5. Gyakorlati anyag 2018/19 1. félév Függvények határértéke 1. Bizonyítsuk be definíció alapján a következőket! (a) lim x 2 3x+1 5x+4 = 1 2 (b) lim x 4 x 16 x 2 4x = 2

Részletesebben

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot.

Matematikai háttér. 3. Fejezet. A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot. 3. Fejezet Matematikai háttér A matematika hozzászoktatja a szemünket ahhoz, hogy tisztán és világosan lássa az igazságot René Descartes Számtalan kiváló szakirodalom foglalkozik a különféle differenciálegyenletek

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( FÜGGVÉNYEK 1. (008. okt., 14. fel, 5+7 pont) Fogalmazza meg, hogy az f : R R, f ( x) x 1 függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0( x) x függvény grafikonjából! Ábrázolja

Részletesebben

2014/2015. tavaszi félév

2014/2015. tavaszi félév Hajder L. és Valasek G. hajder.levente@sztaki.mta.hu Eötvös Loránd Tudományegyetem Informatikai Kar 2014/2015. tavaszi félév Tartalom Geometria modellezés 1 Geometria modellezés 2 Geometria modellezés

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben