Az Informatika Elméleti Alapjai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az Informatika Elméleti Alapjai"

Átírás

1 Az Informatika Elméleti Alapjai dr. Kutor László Az üzenet információ-tartalma és redundanciája Tömörítő algoritmusok elemzése Felhasználónév: iea Jelszó: IEA07 BMF NIK dr. Kutor László IEA 7/1 Az információ mérésére vonatkozó függvény Additivitás: I (X k ) + I (C j )= I (X k, C j ) f 1 (n) + f 1 (m) = f 1 (n * m) f 2 (1/n) + f 2 (1/m) = f 2 (1/n * 1/m) f 3 (p{x k }) + f 3 (p{c j })= f 3 (p{x k *C j } f = log? BMF NIK dr. Kutor László IEA 7/2

2 R. Hartley formula (egyenlő előfordulási valószínűségű) dolgok kiválasztásához kapcsolódó információ mérésére H= k * log n Ahol H = az információ mennyiség egy üzenet (szó) kiválasztásakor n = az üzenet - ABC betűinek száma k = a betűk száma az üzenetben (szóban) Az információ mértékegységei különböző logaritmusok estén: H = k * log 10 n [ Hartley] H = k * log 2 n [ Shannon, bit] H = k * log e n [ Nat ] BMF NIK dr. Kutor László IEA 7/3 Példák az egy elem kiválasztását leíró információ nagyságára I = 1, 2, 3, 4, 5 I(x i ) = log 2 (n), vagy -log 2 (1/n), vagy - log 2 (p(x i )) BMF NIK dr. Kutor László IEA 7/4

3 C. E. Shannon és N.Wiener információ értelmezése Kérdés: Véges számú közleményből véletlenszerűen kiválasztunk ki egyet, és ebből milyen következtetést vonhatunk le az egész közlemény bizonytalanságára? Hány bit szükséges egy üzenet továbbításához?! Legyen: x 1,x 2,x 3,.x i, x n = az egyedi közlemények S = x 1 +x 2 +x 3 + +x i +.. x n (Az összes üzenet) H(S) = a közlemény információ tartalma P{x 1 }, P{x 2 }, P{x 3 }, P{x i }, P{x n } = az üzenetek előfordulási valószínűsége BMF NIK dr. Kutor László IEA 7/5 A Shannon összefüggés magyarázata Ha a kibocsátott üzenetek száma: M, akkor X i előfordulásának száma: g i = M * p(x i ) I M = g 1 *I(x 1 ) + g i *I(x i ) + g n *I(X n ) I(x i ) = az i-ik üzenet információ tartalma = -log 2 p(x i ) I M = - M* p( x i }ó)* log 2 p(x i ) H(S) = - p( x i )* log 2 p(x i )?! BMF NIK dr. Kutor László IEA 7/6

4 Az információ redundanciája 1. Redundancia köznapi értelmezése: terjengősség A redundancia információ elméleti értelmezése: n H S = - p{ x i }* log 2 p{x i } (Shannon) i=1 n H max = - 1/n * log (1/n)= - log (1/n) = log (n) i=1 (Hartley) H relatív = H S H max = az információ-forrás jósága BMF NIK dr. Kutor László IEA 7/7 Az információ redundanciája 2. H S = a hírforrás információ tartalma (entrópiája) H max = a hírforrás maximális információ tartalma H relatív = H S H max = az információ forrás jósága H R S = 1 - S A hírforrás által közölt információ * 100 H hány százaléka felesleges max Példa: H S = H max = 2 Hr = = R S = ( ) * 100 = 15.8 ~ 16% BMF NIK dr. Kutor László IEA 7/8

5 Példa az írott szöveg redundancájára 1 ( a szöveg minden 3 karakteréből 2 elhagyva) A programozók (minden ellenkező híresztelés ellenére) emberek, akik éjnek éjjelén, teljesen alkalmatlan fejlesztőprogramokkal, hibáktól hemzsegő hardverek egymáshoz nem illeszthető konglomerátumán megkísérlik, hogy a feladatra alkalmatlan megbízóik megrendelésére megbízóik egymásnak ellentmondó kívánságait olyan programokká alakítsák át, amelyeket aztán a végén, senki sem fog használni. BMF NIK dr. Kutor László IEA 7/9 Példa az írott szöveg redundancájára 2 ( a szöveg minden 3 karakteréből 1 elhagyva) A programozók (minden ellenkező híresztelés ellenére) emberek, akik éjnek éjjelén, teljesen alkalmatlan fejlesztőprogramokkal, hibáktól hemzsegő hardverek egymáshoz nem illeszthető konglomerátumán megkísérlik, hogy a feladatra alkalmatlan megbízóik megrendelésére megbízóik egymásnak ellentmondó kívánságait olyan programokká alakítsák át, amelyeket aztán a végén, senki sem fog használni. BMF NIK dr. Kutor László IEA 7/10

6 Példa az írott szöveg redundancájára 1 ( a szöveg minden karaktere kiírva) A programozók (minden ellenkező híresztelés ellenére) emberek, akik éjnek éjjelén, teljesen alkalmatlan fejlesztőprogramokkal, hibáktól hemzsegő hardverek egymáshoz nem illeszthető konglomerátumán megkísérlik, hogy a feladatra alkalmatlan megbízóik megrendelésére megbízóik egymásnak ellentmondó kívánságait olyan programokká alakítsák át, amelyeket aztán a végén, senki sem fog használni. BMF NIK dr. Kutor László IEA 7/11 A magyar nyelv betűgyakorisága és információ tartalma szavas újságszöveg alapján Gyakoriság Információ (% ) tartalom (bit) Fülöp Géza Gyakoriság Információ (% ) tartalom (bit) Gyakoriság Információ (% ) tartalom (bit) A 9,35 3,43 Á 3,72 4,77 B 1,72 5,87 C 0,60 7,40 D 1,71 5,90 E 9,71 3,37 É 3,87 4,71 F 0,88 6,87 G 3,55 4,83 H 1,23 6,37 I 4,39 4,53 J 1,21 6,39 K 5,35 4,24 L 6,30 4,00 M 3,92 4,69 N 5,47 4,21 O 4,47 4,50 Ö 2,14 5,57 P 1,04 6,61 R 4,22 4,58 S 6,57 3,94 T 7,87 3,68 U 1,29 6,30 Ü 0,93 6,77 V 1,81 5,81 X 0,01 13,33 Y 2,21 5,52 Z 4,46 4,50 I átlag = 4.44 bit BMF NIK dr. Kutor László IEA 7/12

7 Tömörítő programok hatékonysága A kiinduló fájl típusa:.exe.img.txt A kiinduló fájl mérete: Huffmann LZW Aritmetikai PKZIP ARJ Koschek Vilmos BMF NIK dr. Kutor László IEA 7/13 Az angol nyelv betűgyakorisága Betű Betű Információ [bit] gyakoriság A 8,4966% 3,5570 B 2,0720% 5,5928 C 4,5388% 4,4615 D 3,3844% 4,8850 E 11,1607% 3,1635 F 1,8121% 5,7862 G 2,4705% 5,3391 H 3,0034% 5,0573 I 7,5448% 3,7284 J 0,1965% 8,9913 K 1,1016% 6,5043 L 5,4893% 4,1872 M 3,0129% 5,0527 Betű Betű Információ[bit] gyakoriság N 6,6544% 3,9095 O 7,1635% 3,8032 P 3,1671% 4,9807 Q 0,1961% 8,9942 R 7,5809% 3,7215 S 5,7351% 4,1240 T 6,9509% 3,8467 U 3,6308% 4,7836 V 1,0074% 6,6332 W 1,2899% 6,2766 X 0,2902% 8,4287 Y 1,7779% 5,8137 Z 0,2722% 8,5211 I átlag = 4.22 bit BMF NIK dr. Kutor László IEA 7/14

8 Tömörítő programok tesztje 1. Szövegfájlok méret szerint Kiinduló fájlok mérete: 1.22 MBájt BMF NIK dr. Kutor László IEA 7/15 Tömörítő programok tesztje 2. Szövegfájlok idő szerint Kiinduló fájlok mérete: 1.22 MBájt BMF NIK dr. Kutor László IEA 7/16

9 Tömörítő programok tesztje 3..doc fájlok méret szerint MBájt BMF NIK dr. Kutor László IEA 7/17 Tömörítő programok tesztje 4..doc fájlok idő szerint MBájt BMF NIK dr. Kutor László IEA 7/18

10 Tömörítő programok tesztje 2.. exe fájlok méret szerint 8.47 MBájt BMF NIK dr. Kutor László IEA 7/19 Tömörítő programok tesztje 6.. exe fájlok 8.47 MBájt BMF NIK dr. Kutor László IEA 7/20

11 Tömörítő programok tesztje 7. kép fájlok (.png) méret szerint MBájt BMF NIK dr. Kutor László IEA 7/21 Tömörítő programok tesztje 8. kép fájlok (.png) idő szerint MBájt BMF NIK dr. Kutor László IEA 7/22

12 Tömörítő programok tesztje 9. hang fájlok (.wav) méret szerint MBájt BMF NIK dr. Kutor László IEA 7/23 Tömörítő programok tesztje 10. hang fájlok (.wav) idő szerint MBájt BMF NIK dr. Kutor László IEA 7/24

13 Tömörítő programok tesztje 11. Tömörítvények (.zip) méret szerint 6.61 MBájt BMF NIK dr. Kutor László IEA 7/25 Tömörítő programok tesztje 12. Tömörítvények (.zip) idő szerint 6.61 MBájt BMF NIK dr. Kutor László IEA 7/26

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Törtszámok bináris ábrázolása, Az információ értelmezése és mérése http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF NIK

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Minimális redundanciájú kódok Statisztika alapú tömörítő algoritmusok http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 BMF

Részletesebben

Zárthelyi dolgozat feladatainak megoldása 2003. õsz

Zárthelyi dolgozat feladatainak megoldása 2003. õsz Zárthelyi dolgozat feladatainak megoldása 2003. õsz 1. Feladat 1. Milyen egységeket rendelhetünk az egyedi információhoz? Mekkora az átváltás közöttük? Ha 10-es alapú logaritmussal számolunk, a mértékegység

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László Jelek típusai Átalakítás az analóg és digitális rendszerek között http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 3/1

Részletesebben

5. foglalkozás. Húsz találgatás Információelmélet

5. foglalkozás. Húsz találgatás Információelmélet 5. foglalkozás Húsz találgatás Információelmélet Röviden Mennyi információ van egy 1000 oldalas könyvben? Egy 1000 oldalas telefonkönyvben vagy 1000 üres lapon vagy Tolkien A Gyűrűk Ura könyvében van több

Részletesebben

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség.

1. tétel. Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. 1. tétel Valószínűségszámítás vizsga Frissült: 2013. január 19. Valószínűségi mező, véletlen tömegjelenség. A valószínűségszámítás tárgya: véletlen tömegjelenségek vizsgálata. véletlen: a kísérlet kimenetelét

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei

Az Informatika Elméleti Alapjai. Információ-feldolgozó paradigmák A számolás korai segédeszközei Az Informatika Elméleti Alapjai dr. Kutor László Információ-feldolgozó paradigmák A számolás korai segédeszközei http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA2/1 Az

Részletesebben

Felhasználói útmutató

Felhasználói útmutató Felhasználói útmutató egyeztetési eljárás kezdeményezéséhez a (volt) biztosítottak részére 2013. január 1-jétől azok a biztosítottak (volt biztosítottak), akik ügyfélkapu regisztrációval rendelkeznek,

Részletesebben

Szoftver alapfogalmak

Szoftver alapfogalmak Szoftver alapfogalmak Azon a programok algoritmusok, eljárások, és hozzájuk tartozó dokumentációk összessége, melyek a számítógép működéséhez szükségesek. (nem kézzel fogható, szellemi termékek) Algoritmus

Részletesebben

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban,

2013.11.25. H=0 H=1. Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, Legyen m pozitív egészre {a 1, a 2,, a m } különböző üzenetek halmaza. Ha az a i üzenetet k i -szer fordul elő az adásban, akkor a i (gyakorisága) = k i a i relatív gyakorisága: A jel információtartalma:

Részletesebben

MI SZÜKSÉGES A KÉRELMEK ELEKTRONIKUS ÚTON TÖRTÉNŐ BENYÚJTÁSÁHOZ?

MI SZÜKSÉGES A KÉRELMEK ELEKTRONIKUS ÚTON TÖRTÉNŐ BENYÚJTÁSÁHOZ? MI SZÜKSÉGES A KÉRELMEK ELEKTRONIKUS ÚTON TÖRTÉNŐ BENYÚJTÁSÁHOZ? 1. Ügyfélkapus regisztráció 2. ABEV-JAVA Általános Nyomtatványkitöltő Program 3. Regisztráció a hivatali címtárba 4. Elektronikus kérelem

Részletesebben

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói

Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus

Részletesebben

Jel, adat, információ

Jel, adat, információ Kommunikáció Jel, adat, információ Jel: érzékszerveinkkel, műszerekkel felfogható fizikai állapotváltozás (hang, fény, feszültség, stb.) Adat: jelekből (számítástechnikában: számokból) képzett sorozat.

Részletesebben

A display hirdetések hatékonyságmérése

A display hirdetések hatékonyságmérése A display hirdetések hatékonyságmérése A kutatás célja A display hirdetések hatékonyságának vizsgálata a hirdetéseket valós környezetben vizsgáljuk kimutatjuk, hogy a kreatív és a megjelenés típusa milyen

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Információelmélet. Informatikai rendszerek alapjai. Horváth Árpád. 2015. október 29.

Információelmélet. Informatikai rendszerek alapjai. Horváth Árpád. 2015. október 29. Információelmélet Informatikai rendszerek alapjai Horváth Árpád 205. október 29.. Információelmélet alapfogalmai Információelmélet Egy jelsorozat esetén vizsgáljuk, mennyi információt tartalmaz. Nem érdekel

Részletesebben

Az Informatika Elméleti Alapjai

Az Informatika Elméleti Alapjai Az Informatika Elméleti Alapjai dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/iea.html Felhasználónév: iea Jelszó: IEA07 IEA 1/1 Követelmények Vizsga követelmény: félévközi jegy Zárthelyi időpontok:

Részletesebben

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás

Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre

Részletesebben

Valószínűségszámítás és statisztika

Valószínűségszámítás és statisztika Valószínűségszámítás és statisztika Programtervező informatikus szak esti képzés Varga László Valószínűségelméleti és Statisztika Tanszék Matematikai Intézet Természettudományi Kar Eötvös Loránd Tudományegyetem

Részletesebben

TÖMÖRÍTÉS, DARABOLÁS ELSŐ TÉMAKÖR: FÁJLKEZELÉS FÁJLOK BECSOMAGOLÁSA

TÖMÖRÍTÉS, DARABOLÁS ELSŐ TÉMAKÖR: FÁJLKEZELÉS FÁJLOK BECSOMAGOLÁSA 1 ELSŐ TÉMAKÖR: FÁJLKEZELÉS TÖMÖRÍTÉS, DARABOLÁS Ebben a feladatban a következőket fogjuk gyakorolni: Fájlok becsomagolása, tömörített fájlok kicsomagolása. Nagyméretű fájlok darabolása, fájlegyesítés.

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002

Kódolás, hibajavítás. Tervezte és készítette Géczy LászlL. szló 2002 Kódolás, hibajavítás Tervezte és készítette Géczy LászlL szló 2002 Jelkapcsolat A jelkapcsolatban van a jelforrás, amely az üzenő, és a jelérzékelő (vevő, fogadó), amely az értesített. Jelforrás üzenet

Részletesebben

Levelezési beállítások

Levelezési beállítások Levelezési beállítások Tartalomjegyzék 1 2 2.1 2.2 2.3 2.4 3 Általános információk...2 Beállítások Windows alatt...2 Thunderbird beállítások...2 Microsoft Outlook 2010 beállítások...6 Androidos beállítások...10

Részletesebben

Microsoft Excel 2010. Gyakoriság

Microsoft Excel 2010. Gyakoriság Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó

Részletesebben

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002.

Készítette: Fegyverneki Sándor. Miskolci Egyetem, 2002. INFORMÁCIÓELMÉLET Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2002. i TARTALOMJEGYZÉK. Bevezetés 2. Az információmennyiség 6 3. Az I-divergencia 3 3. Információ és bizonytalanság

Részletesebben

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...

Titkosírás. Biztos, hogy titkos? Szabó István előadása. Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak... Biztos, hogy titkos? Szabó István előadása Az életben sok helyen használunk titkosítást (mobil, internet, jelszavak...) Története Az ókortól kezdve rengeteg feltört titkosírás létezik. Monoalfabetikus

Részletesebben

Információelmélet Szemináriumi gyakorlatok

Információelmélet Szemináriumi gyakorlatok Információelmélet Szemináriumi gyakorlatok. feladat. Adott az alábbi diszkrét valószínűségi változó: ( ) a b c d X = Számítsuk ki az entróiáját: H(X ) =?. feladat. Adott az alábbi diszkrét valószínűségi

Részletesebben

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január

Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus

Részletesebben

Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda.

Feladat. Bemenő adatok. Bemenő adatfájlok elvárt formája. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. Például (bemenet/pelda. Berezvai Dániel 1. beadandó/4. feladat 2012. április 13. BEDTACI.ELTE Programozás 3ice@3ice.hu 11. csoport Feladat Madarak életének kutatásával foglalkozó szakemberek különböző településen különböző madárfaj

Részletesebben

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT.

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. Előterjesztette: Jóváhagyta: Doma Géza koordinációs főmérnök Posztós Endre

Részletesebben

Az adatkezelés eszközei

Az adatkezelés eszközei Az adatkezelés eszközei Vázlat Tömörítés Archiválás Biztonsági mentés Adatok biztonsága a számítógépen Tömörítés története A tömörítés igénye nem elsődlegesen a számítógépek adattárolása miatt merült fel,

Részletesebben

Informatikai alapismeretek (Információ-Technológia)

Informatikai alapismeretek (Információ-Technológia) 1 Informatikai alapismeretek (Információ-Technológia) 17. rész TÖMÖRÍTÉS, BIZTONSÁG és NETIKETT Készítette: Komárominé Kék Erika 2 Tömörítés Fogalma: Okai: adatvesztés nélküli méretkicsinyítés -ritkán

Részletesebben

Informatikai rendszerek alapjai

Informatikai rendszerek alapjai Iformatikai redszerek alapjai Dr. Kutor László Hiba típusok, meghibásodási görbe A csatorakódolás elve és gyakorlata a hibatűrés feltétele: a redudacia http://ui-obuda.hu/users/kutor/ 2015. ősz Óbudai

Részletesebben

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül

ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az eredmény. A kérdés a következő: Mikor mondhatjuk azt, hogy bizonyos események közül A Borel Cantelli lemma és annak általánosítása. A valószínűségszámítás egyik fontos eredménye a Borel Cantelli lemma. Először informálisan ismertetem, hogy milyen probléma vizsgálatában jelent meg ez az

Részletesebben

Az önértékelés szerepe a továbbtanulási döntésekben

Az önértékelés szerepe a továbbtanulási döntésekben Közmunka, külföldi munkavállalás és a magyar munkaerőpiac 2014. november 28., Szirák, Hotel Kastély Keller Tamás Az önértékelés szerepe a továbbtanulási döntésekben A munka az OTKA PD-105976-os számú poszt-doktori

Részletesebben

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I. : Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3

Részletesebben

Egyszerű programozási tételek

Egyszerű programozási tételek Egyszerű programozási tételek 2. előadás Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2011. szeptember 15. Sergyán (OE NIK) AAO 02 2011. szeptember 15.

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

3Sz-s Kft. Tisztelt Felhasználó!

3Sz-s Kft. Tisztelt Felhasználó! 3Sz-s Kft. 1158 Budapest, Jánoshida utca 15. Tel: (06-1) 416-1835 / Fax: (06-1) 419-9914 E-mail: zk@3szs. hu / Web: http://www. 3szs. hu Tisztelt Felhasználó! Köszönjük, hogy telepíti az AUTODATA 2007

Részletesebben

VisualBaker Telepítési útmutató

VisualBaker Telepítési útmutató VisualBaker Telepítési útmutató Office Hungary Bt web: www.visualbaker.hu e-mail: info@visualbaker.hu Tartalomjegyzék: Telepítési útmutató... 1 Tartalomjegyzék:... 2 Első lépések:... 3 Telepítési kulcs...

Részletesebben

ComFit Kft. részére végzett Farmakovigilanciai irodalomfigyelés - Megbízói elégedettség mérő kérdőív 2013. február 11.

ComFit Kft. részére végzett Farmakovigilanciai irodalomfigyelés - Megbízói elégedettség mérő kérdőív 2013. február 11. ComFit Kft. részére végzett Farmakovigilanciai irodalomfigyelés - Megbízói elégedettség mérő kérdőív 2013. február 11. Kiküldött kérdőívek száma: 35. A kimutatás a kitöltött kérdőívek adatait tartalmazza

Részletesebben

Próbaérettségi feladatsor_a NÉV: osztály Elért pont:

Próbaérettségi feladatsor_a NÉV: osztály Elért pont: Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a

Részletesebben

Az értékelés során következtetést fogalmazhatunk meg a

Az értékelés során következtetést fogalmazhatunk meg a Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre

Részletesebben

Feladatok és megoldások a 4. hétre

Feladatok és megoldások a 4. hétre Feladatok és megoldások a. hétre Építőkari Matematika A3. Pisti nem tanult semmit a vizsgára, ahol 0 darab eldöntendő kérdésre kell válaszolnia. Az anyagból valami kicsi dereng, ezért kicsit több, mint

Részletesebben

Hegesztőrobot rendszerek biztonságtechnikája

Hegesztőrobot rendszerek biztonságtechnikája Hegesztőrobot rendszerek biztonságtechnikája Dipl. Ing. Zsolt, GYŐRVÁRY Application engineer Flexman Robotics Kft. Europe 1 A hegesztő robotrendszerekre vonatkozó biztonsági előírások csoportosítása 2

Részletesebben

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás

NEURONHÁLÓS HANGTÖMÖRÍTÉS. Áfra Attila Tamás NEURONHÁLÓS HANGTÖMÖRÍTÉS Áfra Attila Tamás Tartalom Bevezetés Prediktív kódolás Neuronhálós prediktív modell Eredmények Források Bevezetés Digitális hanghullámok Pulzus kód moduláció Hangtömörítés Veszteségmentes

Részletesebben

Nincs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy

Nincs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy Véges populációméret okozta beltenyésztettség incs öntermékenyítés, de a véges méret miatt a párosodó egyedek bizonyos valószínűséggel rokonok, ezért kerül egy utódba 2 IBD allél Előadásról: -F t (-/2)

Részletesebben

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága

A PhysioBank adatmegjelenítő szoftvereinek hatékonysága A PhysioBank adatmegjelenítő szoftvereinek hatékonysága Kaczur Sándor kaczur@gdf.hu GDF Informatikai Intézet 2012. november 14. Célok, kutatási terv Szabályos EKG-felvétel: P, Q, R, S, T csúcs Anatómiai

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

KÓDOLÁSTECHNIKA PZH. 2006. december 18.

KÓDOLÁSTECHNIKA PZH. 2006. december 18. KÓDOLÁSTECHNIKA PZH 2006. december 18. 1. Hibajavító kódolást tekintünk. Egy lineáris bináris blokk kód generátormátrixa G 10110 01101 a.) Adja meg a kód kódszavait és paramétereit (n, k,d). (3 p) b.)

Részletesebben

ADATSZOLGÁLTATÁS központi honlap használata esetén

ADATSZOLGÁLTATÁS központi honlap használata esetén ADATSZOLGÁLTATÁS központi honlap használata esetén 1. A 18/2005. IHM rendelet melléklete alapján össze kell állítani a közérdekű adatokat 2. Az elkészített dokumentumok feltöltése a központi honlapra:

Részletesebben

SZERZŐ: Kiss Róbert. Oldal1

SZERZŐ: Kiss Róbert. Oldal1 A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott

Részletesebben

Segédlet Digitális írástudás - Operációs rendszerek Szilágyi Róbert S.

Segédlet Digitális írástudás - Operációs rendszerek Szilágyi Róbert S. Windows Xp felhasználói felület részei 7 2 8 3 1 9 4 6 5 1. számítógépre telepített programok listája 2. bejelentkezett felhasználó 3. leggyakrabban használt programok 4. START menü 5. tálca (itt helyezkednek

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Novell és Windows7 bejelentkezési jelszavak módosítása

Novell és Windows7 bejelentkezési jelszavak módosítása 1 Novell és Windows7 bejelentkezési jelszavak módosítása A jelszavak használatáról a Nemzeti Közszolgálati Egyetem informatikai és kommunikációs hálózata használatának és üzemeltetésének szabályai, abban

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

A matematikai feladatok és megoldások konvenciói

A matematikai feladatok és megoldások konvenciói A matematikai feladatok és megoldások konvenciói Kozárné Fazekas Anna Kántor Sándor Matematika és Informatika Didaktikai Konferencia - Szatmárnémeti 2011. január 28-30. Konvenciók Mindenki által elfogadott

Részletesebben

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba

1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód:

Szerző. Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: Név: vp.05@hotmail.com Kurzuskód: Szerző Név: Varga Péter ETR azonosító: VAPQAAI.ELTE Email cím: vp.05@hotmail.com Kurzuskód: IP-08PAEG/27 Gyakorlatvezető neve: Kőhegyi János Feladatsorszám: 20 1 Tartalom Szerző... 1 Felhasználói dokumentáció...

Részletesebben

A gyogyhirek.hu olvasói a gyermeket nevelő családok. Hirdetések tekintetében célcsoportunk főleg a 20 50 éves, gyermeket nevelő szülők.

A gyogyhirek.hu olvasói a gyermeket nevelő családok. Hirdetések tekintetében célcsoportunk főleg a 20 50 éves, gyermeket nevelő szülők. BEMUTATKOZÁS A gyogyhirek.hu Közép-kelet Európa és Magyarország legnagyobb gyermekkórházának a Heim Pál Gyermekkórháznak a gyermekgyógyászati, gyermek-egészségügyi portálja. Kórházunk 1996-ban útjára indította

Részletesebben

FITNESS SYSTEM Telepítési útmutató

FITNESS SYSTEM Telepítési útmutató FITNESS SYSTEM Telepítési útmutató web: www.szakk.hu e-mail: info@szakk.hu Tartalomjegyzék: Első lépések:... 3 Licenc megállapodás... 3 Telepítési kulcs... 4 Felhasználói adatok... 5 Telepítő csomagok

Részletesebben

Eötvös Loránd Tudományegyetem Könyvtártudományi - Informatikai Tanszék. Fülöp Géza. Az információ. 2. bővített és átdolgozott kiadás

Eötvös Loránd Tudományegyetem Könyvtártudományi - Informatikai Tanszék. Fülöp Géza. Az információ. 2. bővített és átdolgozott kiadás Eötvös Loránd Tudományegyetem Könyvtártudományi - Informatikai Tanszék Fülöp Géza Az információ 2. bővített és átdolgozott kiadás Lektorálta: Bakonyi Géza Budapest, 1996. TARTALOM ELŐSZÓ a 2., átdolgozott

Részletesebben

A tömörítő programokról

A tömörítő programokról -1/5- A tömörítő programokról A fájlok relatívan nagy mérete miatt, azok szállítása adattárolón, vagy átjátszása hálózaton, az Interneten keresztül, időigényes és sok erőforrást igénylő munka. A fájl mérete

Részletesebben

Laboratóriumi vizsgálatok összehasonlító elemzése 2010-2013

Laboratóriumi vizsgálatok összehasonlító elemzése 2010-2013 Laboratóriumi vizsgálatok összehasonlító elemzése 2010-2013 dr. Kramer Mihály tanácsadó Magyar Diagnosztikum Gyártók és Forgalmazók Egyesülete (HIVDA) 2014.08.30 MLDT 57 Nyíregyháza 1 Célkitűzések Négy

Részletesebben

Országjáró Legalább háromhetes tantárgyi projekt

Országjáró Legalább háromhetes tantárgyi projekt Országjáró Legalább háromhetes tantárgyi projekt átfogó intétményfejlesztésként TÁMOP-3.1.4-08/2-2008-0010 Kompetencia alapú oktatás, egyenlő hozzáférés Innovatív intézményekben PIARISTA GIMNÁZIUM (Kecskemét)

Részletesebben

Reguláris kifejezések 1.

Reguláris kifejezések 1. Reguláris kifejezések 1. A nyelvtechnológia eszközei és nyersanyagai 1. gyakorlat A beadandó feladatok be vannak keretezve! 1.1. Miért hívják reguláris kifejezésnek? (!) Az elméleti és a gyakorlati reguláris

Részletesebben

dolás, felbontható kód Prefix kód Blokk kódk Kódfa

dolás, felbontható kód Prefix kód Blokk kódk Kódfa Kódelméletlet dolás dolás o Kódolás o Betőnk nkénti nti kódolk dolás, felbontható kód Prefix kód Blokk kódk Kódfa o A kódok k hosszának alsó korlátja McMillan-egyenlıtlens tlenség Kraft-tételetele o Optimális

Részletesebben

Windows biztonsági problémák

Windows biztonsági problémák Windows biztonsági problémák Miskolci Egyetem Általános Informatikai Tanszék Miért a Windows? Mivel elterjedt, előszeretettel keresik a védelmi lyukakat könnyen lehet találni ezeket kihasználó programokat

Részletesebben

Intergrált Intenzív Matematika Érettségi

Intergrált Intenzív Matematika Érettségi . Adott a mátri, determináns determináns, ahol,, d Számítsd ki:. b) Igazold, hogy a b c. Adott a az 6 0 egyenlet megoldásai. a). c) Számítsd ki a d determináns értékét. d c a b determináns, ahol abc,,.

Részletesebben

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak

Matematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok

Részletesebben

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok. 5. gyakorlat Számítógépes Hálózatok 5. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

EGYENÁRAMÚ TÁPEGYSÉGEK

EGYENÁRAMÚ TÁPEGYSÉGEK dátum:... a mérést végezte:... EGYENÁRAMÚ TÁPEGYSÉGEK m é r é s i j e g y z k ö n y v 1/A. Mérje meg az adott hálózati szabályozható (toroid) transzformátor szekunder tekercsének minimálisan és maximálisan

Részletesebben

Tervezési paraméterek

Tervezési paraméterek Tervezési paraméterek Általános információk Kérjük, hogy az előkészített anyagok fontokat ne tartalmazzanak! A dokumentum mérete legyen arányos a plakát méretével. Amennyiben az anyag direkt színeket tartalmaz,

Részletesebben

PC-Kismester verseny első forduló feladatai. Beküldési határidő: 2015. február 25.

PC-Kismester verseny első forduló feladatai. Beküldési határidő: 2015. február 25. PC-Kismester XVIII. informatikai verseny feladatok 1. oldal, összesen: 5 5-8. osztály PC-Kismester verseny első forduló feladatai Beküldési határidő: 2015. február 25. Informatikai alapismeretek 1. Ms

Részletesebben

Biztonsági folyamatirányító. rendszerek szoftvere

Biztonsági folyamatirányító. rendszerek szoftvere Biztonsági folyamatirányító rendszerek szoftvere 1 Biztonsági folyamatirányító rendszerek szoftvere Tartalom Szoftverek szerepe a folyamatirányító rendszerekben Szoftverek megbízhatósága Szoftver életciklus

Részletesebben

<X Y SZAKKÖZÉPISKOLA> Szakképesítés azonosító száma, megnevezése: 54 522 01 0000 00 00 Erősáramú elektrotechnikus Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0900-06 Informatikai,

Részletesebben

A biomatematika alapjai és a kapcsolódó feladatok megoldása számítógép segítségével Abonyi-Tóth Zsolt, 2005-2006 készült Harnos Andrea, Reiczigel Jenő zoológus előadásainak valamint Fodor János és Solymosi

Részletesebben

Roma fiatalok a középiskolában: Beszámoló a TÁRKI Életpálya-felmérésének 2006 és 2012 közötti hullámaiból

Roma fiatalok a középiskolában: Beszámoló a TÁRKI Életpálya-felmérésének 2006 és 2012 közötti hullámaiból Roma fiatalok a középiskolában: Beszámoló a TÁRKI Életpálya-felmérésének 2006 és 2012 közötti hullámaiból Hajdu Tamás 1 Kertesi Gábor 1 Kézdi Gábor 1,2 1 MTA KRTK KTI 2 CEU Szirák 2014.11.29. Hajdu - Kertesi

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK. Részletek

KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK. Részletek KÖTELEZŐ PROGRAM, SZÁMONKÉRÉSEK Részletek FELADATOK Két zárthelyi dolgozat Önállóan kidolgozandó feladat (adatbázis alapú mintaalkalmazás készítése) A KÖTELEZŐ FELADAT A félév során kötelező programot

Részletesebben

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke

Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kódolások Adatok kódolása Bináris egység: bit (binary unit) bit ~ b; byte ~ B (Gb Gigabit;GB Gigabyte) Gb;GB;Gib;GiB mind más. Elnevezés Jele Értéke Elnevezés Jele Értéke Kilo K 1 000 Kibi Ki 1 024 Mega

Részletesebben

Pénzintézetek jelentése a pénzforgalmi jelzőszám változásáról

Pénzintézetek jelentése a pénzforgalmi jelzőszám változásáról Pénzintézetek jelentése a pénzforgalmi jelzőszám változásáról Felhasználói Segédlet MICROSEC Kft. 1022 Budapest, Marczibányi tér 9. telefon: (1)438-6310 2002. május 4. Tartalom Jelentés készítése...3 Új

Részletesebben

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 063 ÉRETTSÉGI VIZSGA 006. február. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók Formai előírások: A dolgozatot

Részletesebben

ROZGONYI-BORUS FERENC DR. KOKAS KÁROLY. Informatika. Számítástechnika és könyvtárhasználat munkafüzet 6., JAVÍTOTT KIADÁS MOZAIK KIADÓ SZEGED, 2013

ROZGONYI-BORUS FERENC DR. KOKAS KÁROLY. Informatika. Számítástechnika és könyvtárhasználat munkafüzet 6., JAVÍTOTT KIADÁS MOZAIK KIADÓ SZEGED, 2013 ROZGONYI-BORUS FERENC DR. KOKAS KÁROLY Informatika 5 Számítástechnika és könyvtárhasználat munkafüzet 6., JAVÍTOTT KIADÁS MOZAIK KIADÓ SZEGED, 2013 HOGYAN KELL HASZNÁLNI? 1. Mi a szoftver? Fogalmazd meg

Részletesebben

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

ECDL Információ és kommunikáció

ECDL Információ és kommunikáció 1. rész: Információ 7.1 Az internet 7.1.1 Fogalmak és szakkifejezések 7.1.2 Biztonsági megfontolások 7.1.3 Első lépések a webböngésző használatában 7.1.4 A beállítások elévégzése 7.1.1.1 Az internet és

Részletesebben

Neumann János és a kvantum bitek. Petz Dénes

Neumann János és a kvantum bitek. Petz Dénes Neumann János és a kvantum bitek Petz Dénes A téma Neumann János (érdekes történetek) Valószinűség, információ, mátrixok, kvantumelmélet, kvantum-információ,... (sok új és nehéz matematikai fogalom) Neumann

Részletesebben

Excel III. Haladó ismeretek

Excel III. Haladó ismeretek Alkalmazott Informatikai Intézeti Tanszék MŰSZAKI INFORMATIKA Dr.Dudás László 0. Excel III. Haladó ismeretek Haladó szerkesztési ismeretek Az Excel számolótábla méretei Munkafüzet lap felosztása Sorok,

Részletesebben

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István

Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Valószínűség-számítás, statisztika, titkosítási és rendezési algoritmusok szemléltetése számítógép segítségével Kiss Gábor, Őri István Budapesti Műszaki Főiskola, NIK, Matematikai és Számítástudományi

Részletesebben

Informatika Rendszerek Alapjai

Informatika Rendszerek Alapjai Informatika Rendszerek Alapjai Dr. Kutor László Jelek típusai Átalakítás analóg és digitális rendszerek között http://uni-obuda.hu/users/kutor/ IRA 2014 2014. ősz IRA3/1 Analóg jelek digitális feldolgozhatóságának

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

Adatszerkezetek és algoritmusok

Adatszerkezetek és algoritmusok 2009. november 13. Ismétlés El z órai anyagok áttekintése Ismétlés Specikáció Típusok, kifejezések, m veletek, adatok ábrázolása, típusabsztakció Vezérlési szerkezetek Függvények, paraméterátadás, rekurziók

Részletesebben