Az_ATM Hálózatok. Tartalomjegyzék

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az_ATM Hálózatok. Tartalomjegyzék"

Átírás

1 Tartalomjegyzék Bevezetés ATM elve és tulajdonsága Az ATM hálózat felépítése ATM referenciamodell Fizikai réteg Fizikai réteg funkciói TC alréteg nem rendszerfüggő funkciói ATM réteg UNI, NNI VPI/VCI (Virtual Path Identifier, Virtual Channel Identifier) ATM Adaptációs réteg (ATM Adaptation Layer) AAL AAL AAL-3/ AAL A felhasználói sík SSCS rétegei A kontroll sík SSCS rétege Forgalomszabályozás és torlódásvezérlés Szolgáltatás minőségi paraméterek (QoS) QoS osztályok Hozzáférés vezérlés (CAC Connection Admission Control) Késleltetés Cellavesztési valószínűség Hálózat kapacitásának menedzselése UPC (Usage Parameter Control), NPC (Network Parameter Control) Forgalomformálás, Traffic Shaping Torlódást jelző üzenetek küldése a forrás részére Leaky Bucket Ugró ablak (Jumping Window) Triggerelt ugró ablak (Triggered Jumping Window) Csúszó ablak (Moving Window) OAM (Operating and Maintenance) Az ATM B-ISDN jelzésrendszere Jelzéstovábbítási funkciók Meta-jelzésrendszer jelzési konfigurációk B-ISDN jelzési protokoll ATM címformátum LAN emuláció IP-over-ATM Encapsulation (becsomagolás) Klasszikus IP-over-A TM

2 Az ATM Hálózatok Next Hop Resolution Protocol (NHRP) Cell Switch Routing (CSR) Multicast LAN-Flex szolgáltatások (MATÁV RT.) A LAN-Flex szolgáltatások műszaki jellemzése LAN-Bridge LAN-Route CELL-Flex Az alszolgáltatások közös műszaki tulajdonságai A szolgáltatás hálózata, ellátási területe A szolgáltatások a megrendelő szemszögéből LAN-Bridge LAN-Route CELL-Flex LAN-Bridge és a LAN-Route szolgáltatások összehasonlítása A LAN-Flex általános előnyei Az egyes szolgáltatások legkedvezőbb alkalmazási területei Kinek érdemes ATM alapú szolgáltatást igénybe venni? Összefoglaló Summary Irodalomjegyzék Függelék függelék: A VC és VP szemléltetése függlék: AAL1 felépítése függelék: AAL3/ függelék: AAL függelék: OAM függelék: A LAN-Flex hálózat végződtető berendezései Catalyst 2820 ATM multiplexer Cisco 7200 sorozatú routerek: 7202, ATM NTU (Network Termination Unit) Rövidítések, jelölések

3 Bevezetés A mai információra éhes világunkban egyre gyorsabb, nagyobb sávszélességű kommunikációs csatornákra van szükség. Az eddigi gyakorlat szerint általában a különböző kommunikációs szolgáltatások különböző hálózatokat igényeltek. Az ATM (Asynchronous Transfer Mode) technológia alkalmazása lehetővé teszi a szélessávú ISDN (Broadband Integrated Services Digital Network, B-ISDN) szolgáltatás bevezetését. A B-ISDN lehetőséget nyújt a hálózaton keresztüli videózásra, élő TV-s közvetítésekre, CD minőségű zenehallgatásra. Az ATM nem csak világméretű hálózatok (WAN-ok) kiépítésére alkalmas, hanem támogatja MAN (városi hálózatok) és a LAN (helyi hálózatok) kiszolgálását is. A LAN emuláció segítségével képes a hagyományos LAN hálózatokkal (pl.: Ethernet, Token Ring) kommunikálni az ATM kapcsoló és ezáltal beintegrálni azokat a nagysebességű hálózatba. Az ATM sebességét tekintve a Gigabites nagyságrendbe tartozik. Maximális sebessége laboratóriumokban már a fizikai határokat súrolja. Kutatóintézetekben elérhetik az 1 Tbit/s-os átviteli sebességet is. Azt, hogy az ATM a jövő meghatározó átviteli technológiája legyen nem csak a nagy átviteli sebesség biztosítja. Egyrészt képes a jelenlegi különböző átviteli eljárásokat az adaptációs rétegeinek segítségével egyesíteni. Másrészt az ATM vezette be a szolgáltatás minőségi paramétereket, mint új fogalmat az átviteli szolgáltatásban. A felhasználó az általa megrendelt minőségű szolgáltatást kapja és erre garanciát is kap a szolgáltatótól. A hálózat ezeket a szolgáltatás minőségi paramétereket betartja, betartatja. Ezt csak úgy lehet elérni, ha a forgalom folyamatos ellenőrzés alatt áll. Az ATM szabványa még nem teljes, alkalmazásában több nyitott kérdés van. A szabványok illetve ajánlások kidolgozásában nagy szerepet tölt be az ATM Forum és az ITU (Nemzetközi Telekommunikációs Egyesület). 7

4 Az ATM Hálózatok 1. ATM elve és tulajdonsága Az ATM alapelve az, hogy a csomagok mérete legyen kicsi és fix méretű. A nagy és változó méretű csomagok nagy puffereket igényelnek, valamint a késleltetési idő is elfogadhatatlan értékű lehet. Az ATM az információkat 53 byte hosszúságú cellákra bontja, melyekből 48 byte szállít hasznos információt, e cellák folyamait multiplexeli egy közös vonalra Ábra ATM cella Az ATM cella rakománya (payload-ja) nincs védve semmilyen hibaellenőrző eljárással az átvitel során. A fejrész viszont a pontos kapcsolás érdekében védve van. A fejlécben lokális értékű információk szerepeljenek, így redukált funkciók építhetők be. Ezek a lokális értékű információk az úgynevezett virtuális utak (VP Virtual Path) és csatornák (VC Virtual Channel) azonosítására szolgálnak. Az adatátvitelt hívásfelépítés előzi meg, majd a tranzakció után lebontás történik. Az átviteli közeg a legtöbb esetben optikai hálózat, de lehet más az eddigi gyakorlatban alkalmazott fizikai közeg. Az 1.2. ábra egy fizikai közegen lévő virtuális utak (VP) és virtuális csatornák (VC) általános elhelyezkedését mutatja be Ábra VP és VC elhelyezkedése Ha valamelyik VC-n egy ideig nincs átviendő cella, akkor az a VC, azon idő alatt nem foglal el sávszélességet, lehetővé téve, hogy más VC-k viszont többet forgalmazzanak. Ezt statisztikus multiplexálásnak nevezik. A csatornák átlagos sebessége kiadja az átviteli vonal kapacitását, azonban ennél szinte mindig nagyobb vagy kisebb sebességre van szükség igény szerint. Nagyobb sávszélességet igénylő forgalmakat nem lehet maradéktalanul átvinni, hiszen nincs rá kapacitás. Ebben az esetben egy forgalomvezérlő eljárás dönt a túlzott igényekből fakadó torlódás megszüntetéséről, aminek következménye a cellaeldobás. Ez az elv egy lépéssel közelebb helyezi az ATM-et a csomagkapcsolt hálózatok felé. A fix cellaméret hatékony berendezés- 8

5 orientált áramkörök kifejlesztését teszi lehetővé, így a router-eknél sokkal gyorsabb kapcsoló-berendezések építhetőek. Az Asyncronous Transfer Mode aszinkron jellege abban keresendő, hogy az egy forrásból érkező csomagok szabálytalan időközönként érkezhetnek. Ellentétben a szinkron technikákkal, ahol egy meghatározott időrés áll a csomagok rendelkezésére. Az ATM elve azt mondja, hogy a különböző bitsebességű cellákat eltérő gyakorisággal lehet adni. Minden cellát ugyanazzal az algoritmussal kell kezelni. Ez a dinamikus sávszélesség-menedzselés. VCC kapcsolás Virtuális csatorna kapcsolás esetén mind a VPI mind a VCI értékeket fel kell dolgozni, ami lassabb feldolgozást eredményez. Ez nagyszámú összeköttetések esetén számottevő. Különböző csatornák egymástól függetlenül kapcsolódhatnak esetleg más VPI-hez. VPC kapcsolás Virtuális csatorna kapcsolás esetén csak a VPI mezőben található értékek kerülnek feldolgozásra. A virtuális útban összefogott csatornák egyszerre kerülnek kapcsolásra, a VCI értékek érintetlenek maradnak. A 1.3. ábra a VCC és VPC kapcsolásokról mutat szemléletes képet Ábra VCC és VPC kapcsolások 9

6 Az ATM Hálózatok Az ATM kapcsolásban két szintet lehet ilyen módon megkülönböztetni: A gyors, de nem intelligens virtuális út szint, melyet a VP cross-connectek végzik. Ez felel meg a vonalkapcsolt technikák analógiájában az átviteli szintnek. A lassúbb, de intelligensebb virtuális csatorna szint, melyet a VC kapcsolók végzik. Ez felel meg a vonalkapcsolt technikák analógiájában a forgalmi hálózati szintnek. 10

7 2. Az ATM hálózat felépítése Az ATM felépítése rugalmas, a hálózat bármely részén definiálható a nyilvános- és magán hálózatot elválasztó interfész, ami minden esetben UNI (User-Network Interface). A magán hálózat saját magán belül definiálhat NNI (Network-Network Interface) interfészeket a saját kapcsolói között. Ilyen konfigurációs lehetőségek mellett egy nagy hálózat számtalan kis hálózattá bontható szét Ábra ATM hálózat felépítése 2.1. ATM referenciamodell A hálózati protokollok két részre oszthatók: Kapcsolat-orientált Az előbbiek esetén az adatok átvitele előtt szükség van valamiféle kapcsolatfelvételre a két végpont között. Minden csomagot ellátunk a kapcsolat azonosítójával, így a hálózat a már kiépült útvonalon keresztül továbbíthatja csomagjainkat. Ez azzal az előnnyel jár, hogy nem kell minden csomagba elhelyeznünk a címzett és a feladó címét, csupán a kapcsolat azonosítóját. Ezen felül a hálózatnak nem kell minden egyes alkalommal kitalálnia, hogy milyen útvonalon továbbítsa a csomagot, hiszen a kapcsolat felépítésekor az útvonal rögzül. A kapcsolatorientáltság legjobb analógiája a telefonhálózat, ahol a beszélgetés a híváskor kiépült vonalon zajlik. Tipikus kapcsolatorientált hálózati protokoll az X.25, a Frame Relay és az ATM. 11

8 Az ATM Hálózatok Datagram A második, kapcsolatmentes esetben az adattovábbításhoz nincsen szükség kapcsolatfelvételre, egyszerűen veszünk egy csomagot, megcímezzük és a hálózatra bízzuk annak továbbítását. Ilyen például az IPX, az SMDS és az IP is. A datagram hálózatokban elmarad a kapcsolat-felépítés által okozott késleltetés. Ez a megoldás ezen felül sokkal bonyolultabb is. Ha ugyanis egy kapcsolatorientált hálózatban kiépült kapcsolatunk közepén valamilyen hiba keletkezik, a kapcsolat megszakad. A datagram jellegű hálózatok esetében viszont minden csomag egyedi elbírálás alá esik és ha egy útvonal megszűnik, akkor egy másikon még célba juthat a csomag. Arról, hogy hiba történt, a kommunikáló felek nem is értesülnek. A datagram jellegű hálózatok legjobb analógiája a postai levéltovábbítás, ahol a megcímzett borítékot egyszerűen beejtjük a postaládába, s az célbajut bármilyen forgalmi szituáció esetén is, legfeljebb kis késleltetéssel. Az ATM referencia modell A B-ISDN általános protokoll referencia modelljét a 2.2. ábra mutatja Ábra ATM protokoll referencia modell (B-ISDN) Az ATM, mint a B-ISDN hálózat alapjául kiválasztott technológia, az OSI modelltől eltérő, de réteges szerkezetű referencia modellt használ. Nem csak egymás fölötti rétegek, hanem egymás melletti síkok alkotják a modellt. Fizikai réteg Átviteli Közegillesztő Alréteg (Physical Medium Dependent PMD) feladat az átviteli közeg villamos- és mechanikai paramétereihez való illesztés, valamint a bitszinkron kinyerése. Átviteli Konvergencia alréteg (Transmission Convergence TC) feladat a cellafejléc hibakezelése, az átviteli közegnek megfelelő sebesség illesztése. E réteg állítja elő és 12

9 dolgozza fel az átviteli kereteket (pl.:stm-1,..), valamint felel a cellák szinkronizációjáért. ATM réteg Feladata a cellafejléc előállítása, kezelése, cellaszintű multiplexelés elvégzése, és nem utolsósorban a kapcsolás végrehajtása a réteg által leképezett irányítási mező segítségével. Feladata továbbá a forgalomvezérlés és előfizetői paraméterek figyelése, szükség esetén a forgalom korlátozása. Ezt a réteget tartják az ATM lelkének. ATM Adaptációs Réteg (AAL: ATM Adaptations Layer ) Szegmentációs alréteg (Segmentation and Reassembly Sublayer SAR) végzi a felsőbb rétegektől kapott keretek szegmentálását, összerakását, és ezek fejlécét állítja elő, illetve kezeli. Ezen kívül felel a cellavesztések és tévesen beszúrt cellák kezelésért. Konvergencia alréteg (Convergence Sublayer CS) feladata az órajel kinyerése, multiplexelés és hibavédelem. A magasabb réteg felbomlik vezérlési síkra (C-), és felhasználói síkra (U-). Bár mindkét sík ugyanazt az átviteli csatornát használja, de logikailag különválik. A C síkon az U sík összeköttetéseihez szükséges információk haladnak. Mint például hívásfelépítés és bontás, vezérlés és egyéb menedzselési információk. Az U síkon halad a tiszta felhasználói információ, amit az ATM transzparensen kell, hogy továbbítson a társ entitásnak. A management sík (Management Plane) végzi az egész rendszer felügyeletét. Két része van, az egyik a rétegek különböző paramétereit állítja, méri és ellenőrzi (Réteg management), a másik egy egyelőre még nem tisztázott feladattal bíró al-sík, amely azonban csak a réteg managementtel van kapcsolatban (Sík management). Az egész management sík specifikációja még kezdeti stádiumban van. Ez a réteg, ami nyújtja azokat a szolgáltatásokat, melyekre tulajdonképp a hálózat használóinak szüksége van. Kezdetben 4 szolgáltatás (Class A-D), kiszolgálásukra 4 AAL réteget (rendre AAL1-4) definiáltak. Az AAL-1 az áramkör-emulációt, a PSTN hálózattal való kompatibilitást nyújtja. Az AAL2 még nem teljesen kidolgozott szolgáltatás, ez majd az audiovizuális szolgálatot fogja jelenteni. Az AAL-3 és AAL-4 közös funkciókat lát el, ezért AAL-3/4 néven említik. Az AAL-5 szolgál a LAN-ok és Man-ok összekapcsolására. Mindegyik szolgáltatás által felvett felhasználói információ átvitelére más szolgáltatásminőségi paramétereket kell definiálni, hiszen mindegyik szolgáltatás egymástól független és teljesen más működési elvű rendszer átviteléért felel Fizikai réteg Az ATM-nek mint rendszernek egyik nagy előnye az aszinkron üzemmódja. A fizikai réteg feladata valamilyen közegen való átvitel biztosítása bitszinkron, vagy pleziokron üzemmódban. Ez szigorú szinkron állapotot követelő feladat. Az ATM rétegtől kapott cellákat átmeneti tárban kell tárolni, míg a megfelelő pillanatban továbbítani lehetséges. 13

10 Az ATM Hálózatok Az UNI használhat szabványos, illetve adaptált sebességeket is. Az ATM-ben alkalmazott szabványos sebességek összegyűjtve a következők: STS Mbit/s STS-3C/ STM-1 tiszta ATM Mbit/s STS-12c/STM Mbit/s DS Mbit/s E Mbit/s Az ATM-ben alkalmazható adaptált sebességek összegyűjtve a következők: 100 Mbit/s-ig FDDI, Ethernet Mbit/s-ig Fiber Channel, STP 10 Mbit/s-ig Token Ring 25 Mbit/s-ig UTP Fizikai réteg funkciói A Fizikai réteg két alcsoportra lett osztva. Fizikai közeg (PM - Physical Medium), átviteli konvergencia (TC - Transmission Convergence). PM - Physical Medium átviteli közeg villamos illesztése (G.703 elektromos; G.957 optikai) kimenő jelek villamos paramétereinek biztosítása, valamint bemenő jelek bitszintű vétele vonali kódolás órajel kinyerése a bemenő jelből táplálási funkciók ellátása a vonalon az interfész üzemmódjának beállítása TC - Transmission Convergence Az alréteg feladatai részben az átviteli rendszertől, valamint a cellák kezelésével függ össze. Rendszerfüggő feladatok bejövő oldalon a keretszinkronizálás, kimeneti oldalon az átviteli rendszer keretszerkezetének előállítása keretszerkezet információinak feldolgozása (hibafigyelés, menedzselési funkciók) cellasebesség illesztés bitkeverés (jelfolyam fehérítés a payload-ra vonatkozóan, vagyis az 1, és 0 csomók véletlenítése) Rendszertől független feladatok cellaszinkronizálás (cellahatárok felismerése) fejrész hibajavító kód előállítása és beillesztése bejövő cellák fejlécének hibakezelése 14

11 TC alréteg nem rendszerfüggő funkciói Fejrész hibajavító kód (HEC - Header Error Code) Az első négy okteten végzett CRC kód elkészítéséhez tartozó polinom P(x) = x 12 +x A HEC részben alkalmazzák a Coset eljárást. Az eljárás a teljesen nullát tartalmazó bitfolyamok esetén segítséget ad a cella kezdetének meghatározásában. Az eljárás a következő: r(x) b modulo 2, vagyis minden második bit invertálódik. Ezek után, ha négy nullát tartalmazó oktet érkezik, akkor a HEC 55 h b lesz. Az 55 h adja a fejléc 5. oktetjét. Természetesen így nem a cella kezdete lesz az a pillanat, mikor a rendszer felismeri a cellafejlécet, de legalább tudja, hol van Ábra Szinkronizációs algoritmus A cella szinkronizáció csak akkor lehetséges, ha a az átviteli rendszer is szinkron állapotban van. Első lépés a Hunt (keresési) állapot (2.4. ábra). Egy öt oktet hosszú ablakban keressük bitenként azt az oktetett, melynek a megelőző négy oktetre számolt HEC kódja megegyezik az ötödik oktetben található bitmintával. Ha talál ilyen ablakot, következik a Presynch (előszinkronizált) állapot. Most már az ablak 53 oktetes csúszással kerül vizsgálat alá. Ha δ kereten keresztül szinkron állapot regisztrálható, következhet a Synch állapot, ellenkező esetben az algoritmus visszatér a kiinduló Hunt állapotba. A szinkron állapot két állapotrészt takar. Az egyik a javító (correction) a másik a detektáló (detection) állapot. Előszinkronizált állapotból a TC a javító állapotba kerül. Ebben az állapotban kihasználja az alkalmazott HEC kód hibajavító képességét. Hibás esetben átkerül detektáló állapotba, ahol a HEC hibajavító képességét nem használja ki és az egy bithibás fejrészű cellákat is eldobja. Ha a detektálási állapotban (α-1) darab hibás fejrészű cellát talál a TC a cellaszinkron elvesztését detektálja és visszakerül keresési állapotba. A paraméterek értékei a következők: A δ értéke: = SDH esetén 6 = Cellaalapú átvitel esetén 8 Az α értéke mindkét esetben 7. 15

12 Az ATM Hálózatok 2.3. ATM réteg 2.4. Ábra Cella szinkronizáció Az ATM réteg tekinthető a B-ISDN lelkének, ami alapján fontos és bonyolult felépítés képzelhető el. Az ATM-re marad a kapcsolás és továbbítás feladata. Az ATM réteg feladata még természetesen a torlódás- és forgalomvezérlés. Az ATM első látásra nem bonyolult, de nagyon összetett réteg. Az AAL rétegtől a SAP-on keresztül kapott cellák fejlécet kapnak, multiplexálás után a fizikai réteg kapja meg az 53 byte hosszú cellákat. Ellenkező irányban cellákat fogad a fizikai rétegtől, az érvényes cellákat a fejlécben közölt lokális érvényű értékek alapján demultiplexálja, majd továbbadja az AAL rétegnek. Az ATM rétegnek egyidőben több virtuális összeköttetést is tudnia kell kezelni. Természetesen nem ilyen egyszerű a folyamat. Az ATM réteghez való hozzáférés aszimmetrikus. A TE ATM az AAL réteget szolgálja ki a SAP-okon keresztül, míg a kapcsoló csak ATM szintű kapcsolásokat végez, nem rendelkezik SAPokkal. A TE ATM multiplexál/demultiplexál, míg a kapcsoló nem. A TE ATM egyetlen fizikai entitással áll kapcsolatban, míg a kapcsoló a be-és kimenetnek megfelelő számú fizikai entitással rendelkezik. A GFC, forgalomvezérlési, funkció az UNI interfészen létezik, míg az NNI ilyennel nem rendelkezik. Forgalomszabályzás és torlódásvezérlés a 3. fejezetben kerül tárgyalásra, de az ATM réteg szerves része UNI, NNI User Network Interface, Network Network Interface. Az ITU-T két interface-t definiált, az UNI a felhasználói interfész, míg az NNI hálózat kapcsolói között működő interfész. A két interfész között csak a fejlécben van egy kis különbség. Az ATM berendezések kapcsolástechnikája a szakdolgozat terjedelmi korlátai miatt nem szerepel a szakdolgozatban. 16

13 Az ATM cella 53 oktet hosszú. Ebből 48 oktet a rakomány, amit a hálózat transzparens módon továbbítani köteles. 5 oktet hosszú fejlécben szerepelnek a lokális értékű vezérlési információk. A 2.5. ábrán egy UNI cella fejléce látható. bit 2.5. Ábra UNI cella fejléce 1. Generic Flow Control (GFC): Eredetileg multiplexelés támogatását szolgálta, azonban valószínűtlen, hogy ilyen célú felhasználása szabványosításra kerülne. Jelenlegi funkciója nem tiszta. Ez a mező csupán az előfizetői interface-en (UNI) áthaladó cellákban található, a hálózaton belül (NNI) nem használatos, ott ez a 4 bit is a VPI-hez tartozik, 4096 VP együttes használatát lehetővé téve. 2. VPI/VCI: A VC azonosítására szolgálnak. 3. Payload Type (PT): A cella típusát határozza meg (felhasználói vagy management adat, van-e torlódás, stb.). Egy felhasználói adatot hordozó cella esetén 1 bitje az AAL részére van fenntartva. 4. Cell Loss Priority (CLP): Hasonlít a Frame Relay DE (Discard Eligibility) bitjéhez. Beállított értéke jelzi a hálózatnak, hogy ez a cella inkább eldobandó, mint a nem megjelöltek. Az egy bites értékkel csak két prioritást lehet megkülönböztetni, 0" a magas, 1 az alacsony prioritást jelöli. 5. Header Error Control (HEC): A fejléc 5 byte-jára számolt ellenőrző összeg. Képes bármely a fejlécében bekövetkező, egybites hibát kijavítani és több bitnyi hibát észlelni. Minthogy a fejléc mondja meg az ATM kapcsolóknak, hogy mit kell a cellával tenni, nagyon fontos, hogy ilyen hatásos (20%-nyi) védelemben részesüljön. A hibás fejlécű kereteket el kell dobni. Az NNI cella annyiban különbözik az UNI cellától, hogy nincs benne GFC mező, így a virtuális útazonosító 12 bitesre egészül ki. Valamint a PT mezőben a fenntartási értékek az OAM F4 szintű csatornákat jelöli szegmenshez rendelten VPI/VCI (Virtual Path Identifier, Virtual Channel Identifier) Az ATM kapcsolatorientált, a kapcsolatokat használat előtt ki kell építeni. A cellák nem a célpont címét, csupán a kapcsolat azonosítóját hordozzák, amelynek itt is, mint az 17

14 Az ATM Hálózatok X.25-ben vagy a Frame Relay-ben lokális jelentősége van, ezúttal azonban a Virtual Path Identifier és a Virtual Channel Identifier (VPI/VCI) néven hívjuk. Egy kapcsolatot a VPI/VCI mezők együttesen azonosítanak. Egy VP (Virtual Path) segítségével több, azonos irányba tartó VC-t foghatunk össze. Az ezekbe a VC-kbe tartozó cellákat azután pusztán a VPI alapján továbbíthatjuk, változatlan VCI-vel. A VP végén, ott, ahol esetleg az eddig egy irányba futó VC-k elágaznak, meg kell vizsgálni természetesen a VCI mezőt is. Az alábbi ábrán a 6 VC látható, melyeket bizonyos szakaszokra egy VP-be fogtak össze. Az ábrán a VC-k számozásában az első szám a VPI, a második a VCI; az egyszerűség kedvéért minden VC és VP minden kapcsolóban ugyanazt a számot kapta, de természetesen ezek az értékek az X.25-höz hasonlóan a kapcsolat mentén szakaszonként változhatnak. Egyetlen célszerű kivétel van: az egy VP-ben futó kapcsolatok VCI-je célszerűen azonos marad a VP mentén. A VP-n kívüli" kapcsolatok az ábrán a 0 VPI számot kapták, de ez csupán a szemléletesség kedvéért van így Ábra A VPI/VCI használata A VPI/VCI értékek nemcsak kapcsolók között, de egy összeköttetéshez kapcsolón belül is változhatnak a kimenő irányok foglaltsága esetén. A VPI/VCI értékeket kapcsolatfelvételkor a helyi központ határozza meg. A kapcsolat felépülhet virtuális útként, egy VPI-n belül a VCI transzparenciája szavatolt, vagy virtuális csatornaként, ahol a VPI/VCI transzparenciája nem szavatolt. Az ATM cella fejléce tetszőleges értékeket nem tartalmazhat. 18

15 A táblázat az UNI fejrész értékeket tartalmazza. Réteg Elnevezés GFC VPI VCI PT CLP P HY Üres P L-OAM-F PL-OAM-F Fenntartva PPPP 0 0 PPP 1 * Nem hozzárendelt NNNN 0 0 BBB 0 Meta-jelzés csat. NNNN X A0 C * Vég végjelzés csat. NNNN X AA C ATM Broadcast NNNN X AA C * Szegmens OAM-F4 NNNN Y A0 A Vég - vég OAM-F4 NNNN Y A0 A Szegmens OAM-F5 NNNN Y Z 100 A Vég - vég OAM-F5 NNNN Y Z 101 A Forrásmenedzselés NNNN Y Z 110 A A ATM réteg állítja be, B értéke lényegtelen, C a forrásjelzés entitás 0"-ra állítja be, amit a hálózat megváltoztathat, P fizikai réteg állítja be, X VP=0000 esetén felhasználó-helyi központjelzést szállít, Y VP értéke tetszőleges, Z VC 0000, N nem használt, értéke 0, * NNI csak ezeket használja. Az ATM kapcsolatai lehetnek egyirányú, vagy kétirányú pont-pont kapcsolatok (mint az X.25 esetén), vagy egyirányú pont-multipont (broadcast, vagy multicast) kapcsolatok, amikor a küldő egy cella feladásával számos végponthoz juttatja el annak tartalmát. Ez takarékosabb, mintha minden célponthoz külön VC létesülne, nemcsak a kevesebb VC miatt, hanem azért is, mert a multipont VC-n a cella mindaddig csak egy példányban halad, amíg a célpontokhoz vezető útvonal közös ATM Adaptációs réteg (ATM Adaptation Layer) Az AAL réteg nyújtja azokat a szolgáltatásokat, melyekre tulajdonképp a hálózat használóinak szüksége van. Kezdetben 4 szolgáltatás (Class A-D), kiszolgálásukra 4 AAL réteget (rendre AAL1-4) definiáltak. Class A Class B Class C Class D Időzítés Időzítésre érzékeny Időzítésre érzéketlen Sebesség Állandó (CBR) Változó (VBR) Kapcsolat Kapcsolatorientált Datagram AAL AAL1 AAL2 AAL3/4, 5 AAL3/4, 5 19

16 Az ATM Hálózatok (Constant Bit Rate, CBR), (Variable Bit Rate, VBR) Később a négy szolgáltatási osztály ki lett bővítve további kettő szolgáltatási osztállyal. A nem definiált sebességű szolgáltatás (Unspecified Bit Rate, UBR), valamint az elérhető sebességű szolgáltatás (Avariable Bit Rate, ABR). Minthogy a C és D osztályok csak abban tértek el egymástól, hogy a C osztály kapcsolatorientált, a D pedig nem, az AAL3 és 4 nagyon hasonlóak. Éppen ezért funkcióikat egyetlen, AAL3/4 entitásban célszerű megvalósítani. Minthogy ebben a két osztályban időzítésre nincs szükség, az AAL3/4 legfontosabb feladata a kapott csomagok cellákra tördelése és vételkor való újra-összeállítása (Segment Assembly & Reassembly, SAR). Az AAL3/4 azonban ezt meglehetősen bonyolultan teszi, ezért definiálták az egyszerűbb AAL5-öt. Mára már 6 szolgáltatási osztály körvonalazódott, melyek laza kapcsolatban vannak az eredeti néggyel. Számos, a forgalomra és a QoS-re jellemző attribútum is definiálásra került (sebesség. késleltetés, késleltetés-ingadozás, stb.), mely szoros kapcsolatban van a szolgáltatási osztályokkal Ábra Az AAL felépítése Az AAL réteg 3 részből áll (2.7. ábra). A felső kettő együttesen alkotja a Convergence Sublayert (CS), melynek feladata, hogy a magasabb szintektől kapott csomagokat illessze az ATM hálózathoz. A harmadik rész, a SAR Sublayer, amelynek feladata elsősorban az adó oldalon a csomagok cellákra tördelése, a vevő oldalon pedig a cellákból való összeállítása. A CS két részből áll, az alsó az adott AAL-re jellemző, míg a felső szolgáltatásonként különböző. Például az AAL5-höz mind a Frame Relay SSCS, mind pedig az SMDS SSCS definiálásra került, de mindkettő ugyanazt az AAL5 CPCSt használja, éppen ezért a CPCS és SAR részeket együttesen AAL CP-nek (közös résznek) szokták nevezni AAL-1 Ez az osztály állandó bitsebességű, áramkör-emulációnak nevezhető. Úgy működik, mint a vonalkapcsolt szolgáltatások. A meglévő távközlési hálózatokkal való együttműködésre definiált. Csak nyugtázatlan továbbítási szolgáltatást képes nyújtani. A magasabb rétegektől kapott bitfolyamot blokkokba szervezi. A vételoldal átmeneti tárban tárolja a beérkező információt, amit az órajelnek megfelelően ürít. Így keletkezik egy csomagolási késleltetés. A szigorú szinkronizmusból eredően az információt nem hordozó cellák kitöltő oktetek kerülnek feltöltésre. Ez a szolgáltatás a cellavesztésre, illetve késleltetésre érzékeny. A SAR alréteg végzi a 47 oktetnyi információ darabolását, összerakását. 20

17 2.8. Ábra Az AAL-1 felépítése A SAR-PDU fejléc 4 bites SN mezeje tartalmazza a CSI bitet, valamint a SEQ almezőt Ábra Az SN mező felépítése A CSI mezőben van a frekvencia eltérés értéke. A SEQ mező egy 3 bites számláló, ami a cellavesztések detektálására szolgál. A SAR-PDU fejléc 4 bites SNP mezeje is két almezőt tartalmaz Ábra Az SNP mező A CRC mező csak a SEQ mezőt védi a P(x)= x 3 + x + 1 generátorpolinom segítségével. A P mező egy egyszerű páros paritásbitet tartalmaz a megelőző 7 bit védelmére. A CS alréteg feladata a cellakésleltetés kezelése puffertárakkal, cellarakomány összeállítása, órajelfrekvencia kinyerése a vételi oldalon, az átvitt adatstruktúra visszaállítása, pl.: 2048 bps bitfolyamnál a keret kezdete, míg 64kbps-nál a 8 khz-es struktúránál az oktet kezdete. Mivel az ATM átvitelhez nem szükséges szinkron átvitel az órajel visszaállításáról gondoskodni kell, erre két módszer ismeretes. Az egyik az adaptív óra módszer. A vételi. oldalon a puffer hosszúidejű megfigyelése adja az ötletet. Ha a puffer lassan töltődik, akkor a vétel oldali frekvenciát kell kissé növelni, ill. vica versa. Ez az eljárás jitter-t visz a rendszerbe. A másik módszer a szinkron időjel-különbség (SRTS - Synchronous Residual Time Stamp. Az adóoldali frekvencia független a hálózat frekvenciájától, az összeköttetés mindkét végén ismert AAL szinten a hálózati frekvencia, amiből az adó ki tudja számolni a különbséget. Ezzel az eltéréssel a vételoldal korrigálható. 21

18 Az ATM Hálózatok AAL-2 A szolgáltatás változó bitsebességű. Abban különbözik az AAL1-től, hogy csak akkor küld bitfolyamot, ha van hasznos információ. Tulajdonképpen a magasabb, kiszolgált rétegekben van a nagyobb különbség. A menedzselő réteggel való együttműködés megegyezik az AAL1 szolgáltatáséval. AAL2 szolgáltatás tartalmazza majd az audiovizuális információk átviteléhez szükséges eljárásokat. A kép- és hangminták szinkron követik egymást, de nem csak időben, hanem egymáshoz képest is. Az eredő bitfolyam periodikusan börsztös. A szolgáltatás pontos definíciója még nem került kidolgozásra, nincs ITU-T ajánlás AAL-3/4 Az AAL3 és az AAL4 egyforma közös résszel rendelkezik, ezért az AAL3/4 elnevezés. Alkalmazása a csomagkapcsolt hálózatok átvitelére fontos, mint az X.25, Frame Relay... stb. Ez a réteg a felülről kapott csomagokat két lépésben darabolja szét, CPCS a kapott csomagot a ábrán látható keretbe helyezi. A CPI (Common Part Indicator) mutatja meg, hogy a BASize bitben vagy byteban mérendő, a BASize (Buffer Allocations Size) jelzi, hogy mekkora pufferre van szüksége a keret összeállításához a vételi oldalon. A PAD szolgál a teljes keret hosszának 44 byte egész számú többszörösére való kiegészítésére, az AL a keret végét egészíti ki 32 bitre a könnyebb feldolgozás érdekében. Az Etag és a Btag értéke tetszőleges, de azonosnak kell lennie, üzenetenként nő az értékük eggyel, így ellenőrizhetők az összeköttetésekhez tartozó fej- és farokrészek. A hossz azonosító pedig az adat hosszát jelöli, hogy a PAD mezőt el lehessen különíteni az értékes adattól. Hiszen a PAD mező csak kitöltő karaktereket tartalmaz a könnyebb darabolás érdekében. Az AAL3/4 SAR processz a következőképp osztja cellákba a kapott keretet.(2.11. ábra) Az ST (Segment Type) azonosítja, hogy a cella egy keret első, közbülső vagy utolsó cellája, illetve, hogy egy cellába beférő keret-e. Az SN (Sequence Number) mezőt az adó sorban növeli az egymást követő cellákban, a vevő pedig vételkor ellenőrzi. A MID (Multiplex Identification) szolgál az egy VC-n párhuzamosan átküldött több keret azonosítására. Minden keret kap egy sorszámot, amit a SAR processz minden hozzá tartozó cellában beír a MID mezőbe. Ez alapján a vevő SAR processz csoportosítani tudja az egy kerethez tartozó cellákat. A LI (Length Indicator) mező mutatja, hogy a keret utolsó cellája esetén hány értékes byte van a 44 adatbyte-ban, a CRC pedig a teljes cellát védi. 22

19 1 byte 1 byte 2 byte 0-43 byte 1 byte 1 byte 2 byte CPI B tag BA size AAL rakomány PAD AL E tag Hossz CPCS 2 byte 44 byte 2 byte SAR SAR fejrész farokrész SAR fejrész SAR farokrész SAR fejrész SAR farokrész SAR ST SN MID LI CRC 2 bit 4 bit 10 bit 6 bit 10 bit Ábra Az AAL3/4 CPCS és SAR működése AAL-5 Az AAL5 közös része teljesen ugyanazt a funkciót látja el, mint az AAL3/4 közös része nevezetesen csomagok feladása és vétele", csupán sokkal egyszerűbben, de kevésbé megbízhatóan. Ezért ez a szolgáltatás alkalmas a LAN-ok és MAN-ok összekötésére. Itt ugyanis nem követelmény a precizitás, a késleltetés. Az a fontos, hogy a datagramok megérkezzenek rendeltetési helyükre Ábra Az AAL5 keretszerkezete Az AAL5 CPCS szintén keretbe helyezi a kapott csomagot. Az UU (Uset-to User Indication) mező a felhasználó rendelkezésére áll, az AAL nem módosítja. A CPI egyetlen jelenleg is definiált funkciója, hogy a keret végén levő információt a 32-bit határra igazítsa. Vagyis megegyezik az AAL-3/4-ben alkalmazott AL mezővel. A Hossz 23

20 Az ATM Hálózatok az Adat hosszát adja meg, hogy a PAD eltávolítható legyen. A CRC az egész keretet védi, mert az egyes cellákba már nem kerül hibaellenőrző kód. Az AAL5 SAR cellastruktúrája roppant egyszerű, a 48 byte-nyi adatot teljes egészében a keret darabjai töltik ki. Az AAL-5 szolgáltatás ellentétben az AAL3/4-gyel, tehát nem 44 hanem 48 byte hosszú darabokat készít. A keret utolsó celláját a cella fejlécében lévő PT (Packet Type) mező egyik, az AAL részére fönntartott bitje jelzi. Az AAL5 nem azonosítja az egyes csomagokat, így egy VC-n egyszerre csak egy csomag haladhat, amíg a csomag összes cellája át nem ért, nem kezdhetünk új csomag adásába, hisz semmi sem mutatja, melyik cella melyik csomaghoz tartozik. (lsd. még a függelék ábráját) A felhasználói sík SSCS rétegei Mind az AAL3/4, mind az AAL5 közös részének felhasználásával üzemeltethető a fölöttük levő, a szolgáltatásra jellemző SSCS rész. A felhasználói síkon eddig igazán két SSCS került definiálásra, az egyik a Frame Relay-hez, a másik az SMDS-hez. A Frame Relay SSCS feladata a Frame Relay és az ATM QoS paramétereinek egymásnak való megfeleltetése, a DCLI-VC fordítás, a DE bit CLP bitbe való átírása és a Frame Relay forgalomszabályzó bitjeinek a csomagba való elhelyezése. Az SMDS SSCS eltávolítja az SMDS harmadik rétege által a csomagba helyezett fejlécet és végtagot, amit a saját fejlécével és végtagjával helyettesít Szintén fontos, hogy az SMDS által használt forgalomellenőrzést az ATM megfelelő algoritmusával (GCRA) szimuláljuk, ezen algoritmusok paramétereinek egymásba fordítását is meg kell oldani. Ezen kívül létezi még a nulla SSCS is, amikor közvetlenül a közös rész funkcióit használjuk, nevezetesen nagyméretű csomagok küldését és fogadását. Erre épül például az IP-over-ATM A kontroll sík SSCS rétege A kontroll sík AAL rétege az AAL5 közös részeit használja. Azért az AAL5-re esett a választás, mert a hívásfelépítés üzeneteinél igazából nincsen szükség az egyes csomagok átlapolhatóságára és a bonyolult hibaellenőrzési funkciókra. Ha ugyanis az üzenet hibás, aminek kiderítésére elegendő az AAL5 CRC-je-, akkor úgyis újra kell küldeni. 24

Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0

Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0 Mobil kommunikáció /A mobil hálózat/ /elektronikus oktatási segédlet/ v3.0 Dr. Berke József berke@georgikon.hu 2006-2008 A MOBIL HÁLÓZAT - Tartalom RENDSZERTECHNIKAI FELÉPÍTÉS CELLULÁRIS FELÉPÍTÉS KAPCSOLATFELVÉTEL

Részletesebben

Ez a rész H. Perros Connection Oriented Networks (Wiley) könyvéhez adott slide-gyűjtemény alapján készült

Ez a rész H. Perros Connection Oriented Networks (Wiley) könyvéhez adott slide-gyűjtemény alapján készült ATM-hálózatok/1 Ez a rész H. Perros Connection Oriented Networks (Wiley) könyvéhez adott slide-gyűjtemény alapján készült Tartalom Az ATM fő jellemzői Az ATM header Az ATM protokoll-stack A fizikai réteg

Részletesebben

MAC címek (fizikai címek)

MAC címek (fizikai címek) MAC címek (fizikai címek) Hálózati eszközök egyedi azonosítója, amit az adatkapcsolati réteg MAC alrétege használ Gyárilag adott, általában ROM-ban vagy firmware-ben tárolt érték (gyakorlatilag felülbírálható)

Részletesebben

Pantel International Kft. Általános Szerződési Feltételek bérelt vonali és internet szolgáltatásra

Pantel International Kft. Általános Szerződési Feltételek bérelt vonali és internet szolgáltatásra Pantel International Kft. 2040 Budaörs, Puskás Tivadar u. 8-10 Általános Szerződési Feltételek bérelt vonali és internet ra 1. sz. melléklet Az ÁSZF készítésének dátuma: 2009. január 23. Az ÁSZF utolsó

Részletesebben

Számítógépes Hálózatok. 4. gyakorlat

Számítógépes Hálózatok. 4. gyakorlat Számítógépes Hálózatok 4. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

Számítógépes hálózatok

Számítógépes hálózatok Számítógépes hálózatok Hajdu György: A vezetékes hálózatok Hajdu Gy. (ELTE) 2005 v.1.0 1 Hálózati alapfogalmak Kettő/több tetszőleges gép kommunikál A hálózat elemeinek bonyolult együttműködése Eltérő

Részletesebben

TÁVKÖZLŐ HÁLÓZATOK MÉRTÉKADÓ MŰSZAKI KÖVETELMÉNYEI

TÁVKÖZLŐ HÁLÓZATOK MÉRTÉKADÓ MŰSZAKI KÖVETELMÉNYEI TÁVKÖZLŐ HÁLÓZATOK MÉRTÉKADÓ MŰSZAKI KÖVETELMÉNYEI MK-B4.11. KÖZCÉLÚ DIGITÁLIS CSOMAGKAPCSOLT ADATHÁLÓZATOK INTERFÉSZEI B4.11..25 típusú adathálózat előfizetői if. B4.11.1..25 típusú adathálózat hálózati

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP P címzés Dr. Wührl Tibor Ph.D. MsC 04 Ea IP P címzés Csomagirányítás elve A csomagkapcsolt hálózatok esetén a kapcsolás a csomaghoz fűzött irányítási információk szerint megy végbe. Az Internet Protokoll (IP) alapú

Részletesebben

Adatkapcsolati réteg 1

Adatkapcsolati réteg 1 Adatkapcsolati réteg 1 Főbb feladatok Jól definiált szolgáltatási interfész biztosítása a hálózati rétegnek Az átviteli hibák kezelése Az adatforgalom szabályozása, hogy a lassú vevőket ne árasszák el

Részletesebben

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek

Hálózatok Rétegei. Számítógépes Hálózatok és Internet Eszközök. TCP/IP-Rétegmodell. Az Internet rétegei - TCP/IP-rétegek Hálózatok Rétegei Számítógépes Hálózatok és Internet Eszközök WEB FTP Email Telnet Telefon 2008 2. Rétegmodell, Hálózat tipusok Közbenenső réteg(ek) Tw. Pair Koax. Optikai WiFi Satellit 1 2 Az Internet

Részletesebben

AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB

AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB AGSMHÁLÓZATA TOVÁBBFEJLESZTÉSE A NAGYOBB ADATSEBESSÉG ÉS CSOMAGKAPCSOLÁS FELÉ 2011. május 19., Budapest HSCSD - (High Speed Circuit-Switched Data) A rendszer négy 14,4 kbit/s-os átviteli időrés összekapcsolásával

Részletesebben

Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői

Tartalom. Router és routing. A 2. réteg és a 3. réteg működése. Forgalomirányító (router) A forgalomirányító összetevői Tartalom Router és routing Forgalomirányító (router) felépítésük működésük távolságvektor elv esetén Irányító protokollok autonóm rendszerek RIP IGRP DHCP 1 2 A 2. réteg és a 3. réteg működése Forgalomirányító

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg

Dr. Wührl Tibor Ph.D. MsC 04 Ea. IP kapcsolás hálózati réteg Dr. Wührl Tibor Ph.D. MsC 04 Ea IP kapcsolás hálózati réteg IP kapcsolás Az IP címek kezelése, valamint a csomagok IP cím alapján történő irányítása az OSI rétegmodell szerint a 3. rétegben (hálózati network

Részletesebben

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg.

Az adott eszköz IP címét viszont az adott hálózat üzemeltetői határozzákmeg. IPV4, IPV6 IP CÍMZÉS Egy IP alapú hálózat minden aktív elemének, (hálózati kártya, router, gateway, nyomtató, stb) egyedi azonosítóval kell rendelkeznie! Ez az IP cím Egy IP cím 32 bitből, azaz 4 byte-ból

Részletesebben

Hálózatok II. A hálózati réteg torlódás vezérlése

Hálózatok II. A hálózati réteg torlódás vezérlése Hálózatok II. A hálózati réteg torlódás vezérlése 2007/2008. tanév, I. félév Dr. Kovács Szilveszter E-mail: szkovacs@iit.uni-miskolc.hu Miskolci Egyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111

Részletesebben

OSI-ISO modell. Az OSI rétegek feladatai: Adatkapcsolati réteg (data link layer) Hálózati réteg (network layer)

OSI-ISO modell. Az OSI rétegek feladatai: Adatkapcsolati réteg (data link layer) Hálózati réteg (network layer) OSI-ISO modell Több világcég megalkotta a saját elképzelései alapján a saját hálózati architektúráját, de az eltérések miatt egységesíteni kellett, amit csak nemzetközi szinten lehetett megoldani. Ez a

Részletesebben

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak

Hálózatok. Alapismeretek. A hálózatok célja, építőelemei, alapfogalmak Hálózatok Alapismeretek A hálózatok célja, építőelemei, alapfogalmak A hálózatok célja A korai időkben terminálokat akartak használni a szabad gépidők lekötésére, erre jó lehetőség volt a megbízható és

Részletesebben

Hálózatok II. A hálózati réteg funkciói, szervezése

Hálózatok II. A hálózati réteg funkciói, szervezése Hálózatok II. A hálózati réteg funkciói, szervezése 2007/2008. tanév, I. félév r. Kovács Szilveszter -mail: szkovacs@iit.uni-miskolc.hu Miskolci gyetem Informatikai Intézet 106. sz. szoba Tel: (46) 565-111

Részletesebben

A MAC-cím (Media Access Control) egy hexadecimális számsorozat, amellyel még a gyártás során látják el a hálózati kártyákat. A hálózat többi eszköze

A MAC-cím (Media Access Control) egy hexadecimális számsorozat, amellyel még a gyártás során látják el a hálózati kártyákat. A hálózat többi eszköze A MAC-cím (Media Access Control) egy hexadecimális számsorozat, amellyel még a gyártás során látják el a hálózati kártyákat. A hálózat többi eszköze a MAC-címet használja a hálózat előre meghatározott

Részletesebben

Számítógépes Hálózatok. 5. gyakorlat

Számítógépes Hálózatok. 5. gyakorlat Számítógépes Hálózatok 5. gyakorlat Feladat 0 Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x 4 +x 3 +x+1! Mi lesz a 4 bites kontrollösszeg? A fenti üzenet

Részletesebben

2011.01.24. A konvergencia következményei. IKT trendek. Új generációs hálózatok. Bakonyi Péter c.docens. Konvergencia. Új generációs hálózatok( NGN )

2011.01.24. A konvergencia következményei. IKT trendek. Új generációs hálózatok. Bakonyi Péter c.docens. Konvergencia. Új generációs hálózatok( NGN ) IKT trendek Új generációs hálózatok Bakonyi Péter c.docens A konvergencia következményei Konvergencia Korábban: egy hálózat egy szolgálat Konvergencia: végberendezések konvergenciája, szolgálatok konvergenciája

Részletesebben

Hálózatok I. A tárgy célkitűzése

Hálózatok I. A tárgy célkitűzése Hálózatok I. A tárgy célkitűzése A tárgy keretében a hallgatók megismerkednek a számítógép-hálózatok felépítésének és működésének alapelveivel. Alapvető ismereteket szereznek a TCP/IP protokollcsalád megvalósítási

Részletesebben

Internet Protokoll 6-os verzió. Varga Tamás

Internet Protokoll 6-os verzió. Varga Tamás Internet Protokoll 6-os verzió Motiváció Internet szédületes fejlődése címtartomány kimerül routing táblák mérete nő adatvédelem hiánya a hálózati rétegen gépek konfigurációja bonyolódik A TCP/IPkét évtizede

Részletesebben

Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2.

Programozható vezérlő rendszerek KOMMUNIKÁCIÓS HÁLÓZATOK 2. KOMMUNIKÁCIÓS HÁLÓZATOK 2. CAN busz - Autóipari alkalmazásokhoz fejlesztették a 80-as években - Elsőként a BOSCH vállalat fejlesztette - 1993-ban szabvány (ISO 11898: 1993) - Később fokozatosan az iparban

Részletesebben

Lokális hálózatok. A lokális hálózat felépítése. Logikai felépítés

Lokális hálózatok. A lokális hálózat felépítése. Logikai felépítés Lokális hálózatok Számítógép hálózat: több számítógép összekapcsolása o üzenetküldés o adatátvitel o együttműködés céljából. Egyszerű példa: két számítógépet a párhuzamos interface csatlakozókon keresztül

Részletesebben

4. Hivatkozási modellek

4. Hivatkozási modellek 4. Hivatkozási modellek Az előző fejezetben megismerkedtünk a rétegekbe szervezett számítógépes hálózatokkal, s itt az ideje, hogy megemlítsünk néhány példát is. A következő részben két fontos hálózati

Részletesebben

Kommunikáció. 3. előadás

Kommunikáció. 3. előadás Kommunikáció 3. előadás Kommunikáció A és B folyamatnak meg kell egyeznie a bitek jelentésében Szabályok protokollok ISO OSI Többrétegű protokollok előnyei Kapcsolat-orientált / kapcsolat nélküli Protokollrétegek

Részletesebben

HATÁROZATTERVEZET. megállapítottam,

HATÁROZATTERVEZET. megállapítottam, Ügyiratszám: HF-1586-5/2011. Tárgy: piacmeghatározás, a jelentős piaci erővel rendelkező szolgáltatók azonosítása és kötelezettségek előírása (7/2003 piac) HATÁROZATTERVEZET A Bérelt vonalak minimális

Részletesebben

Számítógép hálózatok gyakorlat

Számítógép hálózatok gyakorlat Számítógép hálózatok gyakorlat 5. Gyakorlat Ethernet alapok Ethernet Helyi hálózatokat leíró de facto szabvány A hálózati szabványokat az IEEE bizottságok kezelik Ezekről nevezik el őket Az Ethernet így

Részletesebben

Hálózati architektúrák és rendszerek. 4G vagy B3G : újgenerációs mobil kommunikáció a 3G után

Hálózati architektúrák és rendszerek. 4G vagy B3G : újgenerációs mobil kommunikáció a 3G után Hálózati architektúrák és rendszerek 4G vagy B3G : újgenerációs mobil kommunikáció a 3G után A tárgy felépítése (1) Lokális hálózatok. Az IEEE architektúra. Ethernet Csomagkapcsolt hálózatok IP-komm. Az

Részletesebben

Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek

Az Ethernet példája. Számítógépes Hálózatok 2012. Az Ethernet fizikai rétege. Ethernet Vezetékek Az Ethernet példája Számítógépes Hálózatok 2012 7. Adatkapcsolati réteg, MAC Ethernet; LAN-ok összekapcsolása; Hálózati réteg Packet Forwarding, Routing Gyakorlati példa: Ethernet IEEE 802.3 standard A

Részletesebben

IP alapú távközlés. Virtuális magánhálózatok (VPN)

IP alapú távközlés. Virtuális magánhálózatok (VPN) IP alapú távközlés Virtuális magánhálózatok (VPN) Jellemzők Virtual Private Network VPN Publikus hálózatokon is használható Több telephelyes cégek hálózatai biztonságosan összeköthetők Olcsóbb megoldás,

Részletesebben

8. sz. melléklete Eredetileg a GTS Hungary Kft. által nyújtott szolgáltatásokra vonatkozó feltételek

8. sz. melléklete Eredetileg a GTS Hungary Kft. által nyújtott szolgáltatásokra vonatkozó feltételek A Magyar Telekom Nyrt. Üzleti Általános Szerződési Feltételeinek 8. sz. melléklete Eredetileg a GTS Hungary Kft. által nyújtott szolgáltatásokra vonatkozó feltételek A Magyar Telekom Nyrt. által 5. december

Részletesebben

Számítógép-hálózatok zárthelyi feladat. Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont)

Számítógép-hálózatok zárthelyi feladat. Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont) A verzió Név, tankör: 2005. május 11. Neptun kód: Számítógép-hálózatok zárthelyi feladat 1a. Feladat: Mik az ISO-OSI hálózati referenciamodell hálózati rétegének főbb feladatai? (1 pont) 2a. Feladat: Lehet-e

Részletesebben

III. előadás. Kovács Róbert

III. előadás. Kovács Róbert III. előadás Kovács Róbert VLAN Virtual Local Area Network Virtuális LAN Logikai üzenetszórási tartomány VLAN A VLAN egy logikai üzenetszórási tartomány, mely több fizikai LAN szegmensre is kiterjedhet.

Részletesebben

Tartalom. Hálózati kapcsolatok felépítése és tesztelése. Rétegek használata az adatok továbbításának leírására. OSI modell. Az OSI modell rétegei

Tartalom. Hálózati kapcsolatok felépítése és tesztelése. Rétegek használata az adatok továbbításának leírására. OSI modell. Az OSI modell rétegei Tartalom Hálózati kapcsolatok felépítése és tesztelése Bevezetés: az OSI és a Általános tájékoztató parancs: 7. réteg: DNS, telnet 4. réteg: TCP, UDP 3. réteg: IP, ICMP, ping, tracert 2. réteg: ARP Rétegek

Részletesebben

Számítógépes hálózatok

Számítógépes hálózatok 1 Számítógépes hálózatok Hálózat fogalma A hálózat a számítógépek közötti kommunikációs rendszer. Miért érdemes több számítógépet összekapcsolni? Milyen érvek szólnak a hálózat kiépítése mellett? Megoszthatók

Részletesebben

Hálózati réteg, Internet

Hálózati réteg, Internet álózati réteg, Internet álózati réteg, Internet Készítette: (BM) Tartalom z összekapcsolt LN-ok felépítése. z Ethernet LN-okban használt eszközök hogyan viszonyulnak az OSI rétegekhez? Mik a kapcsolt hálózatok

Részletesebben

Hálózati alapismeretek

Hálózati alapismeretek Hálózati alapismeretek Tartalom Hálózat fogalma Előnyei Csoportosítási lehetőségek, topológiák Hálózati eszközök: kártya; switch; router; AP; modem Az Internet története, legfontosabb jellemzői Internet

Részletesebben

Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez

Számítógép-hálózatok. Gyakorló feladatok a 2. ZH témakörének egyes részeihez Számítógép-hálózatok Gyakorló feladatok a 2. ZH témakörének egyes részeihez IPV4 FELADATOK Dr. Lencse Gábor, SZE Távközlési Tanszék 2 IP címekkel kapcsolatos feladatok 1. Milyen osztályba tartoznak a következő

Részletesebben

Az adatkapcsolati réteg

Az adatkapcsolati réteg Az adatkapcsolati réteg Programtervező informatikus BSc Számítógép hálózatok és architektúrák előadás Az adatkapcsolati réteg A fizikai átviteli hibáinak elfedése a hálózati réteg elől Keretezés Adatfolyam

Részletesebben

Hálózati architektúrák és rendszerek. Szélessávú és Média-kommunikáció szakirány 2008. ősz

Hálózati architektúrák és rendszerek. Szélessávú és Média-kommunikáció szakirány 2008. ősz Hálózati architektúrák és rendszerek Szélessávú és Média-kommunikáció szakirány 2008. ősz 1 A tárgy felépítése Lokális hálózatok. Az IEEE architektúra. Ethernet Csomagkapcsolt hálózatok IP-komm. Az Internet

Részletesebben

IP anycast. Jákó András BME TIO

IP anycast. Jákó András BME TIO IP anycast Jákó András jako.andras@eik.bme.hu BME TIO Tematika Mi az IP anycast? Hogy működik? Mire használható? Alkalmazási példa Networkshop 2011. IP anycast 2 IP...cast IP csomagtovábbítási módok a

Részletesebben

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban

Statikus routing. Hoszt kommunikáció. Router működési vázlata. Hálózatok közötti kommunikáció. (A) Partnerek azonos hálózatban Hoszt kommunikáció Statikus routing Két lehetőség Partnerek azonos hálózatban (A) Partnerek különböző hálózatban (B) Döntéshez AND Címzett IP címe Feladó netmaszk Hálózati cím AND A esetben = B esetben

Részletesebben

Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe

Tartalom. Az adatkapcsolati réteg, Ethernet, ARP. Fogalma és feladatai. Adatkapcsolati réteg. A hálókártya képe Tartalom Az adatkapcsolati réteg, Ethernet, ARP Adatkapcsolati réteg A hálózati kártya (NIC-card) Ethernet ARP Az ARP protokoll Az ARP protokoll által beírt adatok Az ARP parancs Az ARP folyamat alhálózaton

Részletesebben

3. előadás. A TCP/IP modell jelentősége

3. előadás. A TCP/IP modell jelentősége 3. előadás A TCP/IP modell. Az ISO/OSI és a TCP/IP modell összevetése. Alapvető fogalmak A TCP/IP modell jelentősége Habár az OSI modell általánosan elfogadottá vált, az Internet nyílt szabványa történeti

Részletesebben

GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése

GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése Mobil Informatika Dr. Kutor László GSM azonosítók, hitelesítés és titkosítás a GSM rendszerben, a kommunikáció rétegei, mobil hálózatok fejlődése http://uni-obuda.hu/users/kutor/ Bejelentkezés a hálózatba

Részletesebben

Kommunikációs rendszerek programozása. Routing Information Protocol (RIP)

Kommunikációs rendszerek programozása. Routing Information Protocol (RIP) Kommunikációs rendszerek programozása Routing Information Protocol (RIP) Távolságvektor alapú útválasztás Routing Information Protocol (RIP) TCP/IP előttről származik (Xerox Network Services) Tovább fejlesztve

Részletesebben

pacitási kihívások a mikrohullámú gerinc- és lhordó-hálózatokban nkó Krisztián

pacitási kihívások a mikrohullámú gerinc- és lhordó-hálózatokban nkó Krisztián pacitási kihívások a mikrohullámú gerinc- és lhordó-hálózatokban nkó Krisztián rtalomjegyzék Technológia bemutatása Tervezési megfontolások Tesztelési protokollok Értékelés, kihívások az üzemeltetés terén

Részletesebben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben

OFDM technológia és néhány megvalósítás Alvarion berendezésekben SCI-Network Távközlési és Hálózatintegrációs Rt. T.: 467-70-30 F.: 467-70-49 info@scinetwork.hu www.scinetwork.hu Nem tudtuk, hogy lehetetlen, ezért megcsináltuk. OFDM technológia és néhány megvalósítás

Részletesebben

Routing update: IPv6 unicast. Jákó András BME EISzK

Routing update: IPv6 unicast. Jákó András BME EISzK Routing update: IPv6 unicast Jákó András goya@eik.bme.hu BME EISzK Változatlan alapelvek: IPv4 IPv6 prefixek a routing table-ben különféle attribútumokkal a leghosszabb illeszkedő prefix használata kétszintű

Részletesebben

Járműfedélzeti rendszerek II. 8. előadás Dr. Bécsi Tamás

Járműfedélzeti rendszerek II. 8. előadás Dr. Bécsi Tamás Járműfedélzeti rendszerek II. 8. előadás Dr. Bécsi Tamás A FlexRay hálózat Kifejlesztésének célja: alacsony költségen, nagy megbízhatóságú, nagy teljesítményű adatátvitel járműipari környezetben. A specifikációt

Részletesebben

Számítógépes Hálózatok és Internet Eszközök

Számítógépes Hálózatok és Internet Eszközök Számítógépes Hálózatok és Internet Eszközök 2008 20. Hálózati réteg Congestion Control Szállítói réteg szolgáltatások, multiplexálás, TCP 1 Torlódás felügyelet (Congestion Control) Minden hálózatnak korlátos

Részletesebben

Intelligens biztonsági megoldások. Távfelügyelet

Intelligens biztonsági megoldások. Távfelügyelet Intelligens biztonsági megoldások A riasztást fogadó távfelügyeleti központok felelősek a felügyelt helyszínekről érkező információ hatékony feldolgozásáért, és a bejövő eseményekhez tartozó azonnali intézkedésekért.

Részletesebben

Sávszélesség szabályozás kezdőknek és haladóknak. Mátó Péter

Sávszélesség szabályozás kezdőknek és haladóknak. Mátó Péter <atya@fsf.hu> Sávszélesség szabályozás kezdőknek és haladóknak Mátó Péter Az előadás témái A hálózati kapcsolatok jellemzői A hálózati protokollok jellemzői A Linux felkészítése a sávszélesség szabályzásra

Részletesebben

Szolgáltatások minőségi mutatói - üzleti. Tartalom. 3. sz. melléklet

Szolgáltatások minőségi mutatói - üzleti. Tartalom. 3. sz. melléklet 3. sz. melléklet Szolgáltatások minőségi mutatói - üzleti Tartalom 1.1 GTS Ethernet Line... 4 1.1.1 Szolgáltatás várható kiépítési ideje... 4 1.1.2 Szolgáltatás tényleges kiépítési ideje... 5 1.1.3 Szolgáltatás

Részletesebben

Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont

Hálózati réteg. Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont Hálózati réteg Hálózati réteg Feladata: a csomag eljusson a célig Több útválasztó Ez a legalacsonyabb rétek, mely a két végpont közötti átvitellel foglalkozik. Ismernie kell a topológiát Útvonalválasztás,

Részletesebben

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet

Programozó- készülék Kezelőkozol RT óra (pl. PC) Digitális bemenetek ROM memória Digitális kimenetek RAM memória Analóg bemenet Analóg kimenet 2. ZH A csoport 1. Hogyan adható meg egy digitális műszer pontossága? (3p) Digitális műszereknél a pontosságot két adattal lehet megadni: Az osztályjel ±%-os értékével, és a ± digit értékkel (jellemző

Részletesebben

Hálózati architektúrák és rendszerek. Optikai hálózatok Wavelength routed optical networks

Hálózati architektúrák és rendszerek. Optikai hálózatok Wavelength routed optical networks Hálózati architektúrák és rendszerek Optikai hálózatok Wavelength routed optical networks 1 A tárgy felépítése (1) Lokális hálózatok. Az IEEE architektúra. Ethernet Csomagkapcsolt hálózatok IP-komm. Az

Részletesebben

Az RSVP szolgáltatást az R1 és R3 routereken fogjuk engedélyezni.

Az RSVP szolgáltatást az R1 és R3 routereken fogjuk engedélyezni. IntServ mérési utasítás 1. ábra Hálózati topológia Routerek konfigurálása A hálózatot konfiguráljuk be úgy, hogy a 2 host elérje egymást. (Ehhez szükséges az interfészek megfelelő IP-szintű konfigolása,

Részletesebben

A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja.

A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja. A számítógép-hálózat egy olyan speciális rendszer, amely a számítógépek egymás közötti kommunikációját biztosítja. A hálózat kettő vagy több egymással összekapcsolt számítógép, amelyek között adatforgalom

Részletesebben

FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA

FORGALOMIRÁNYÍTÓK. 6. Forgalomirányítás és irányító protokollok CISCO HÁLÓZATI AKADÉMIA PROGRAM IRINYI JÁNOS SZAKKÖZÉPISKOLA FORGALOMIRÁNYÍTÓK 6. Forgalomirányítás és irányító protokollok 1. Statikus forgalomirányítás 2. Dinamikus forgalomirányítás 3. Irányító protokollok Áttekintés Forgalomirányítás Az a folyamat, amely révén

Részletesebben

Az Internet működésének alapjai

Az Internet működésének alapjai Az Internet működésének alapjai Második, javított kiadás ( Dr. Nagy Rezső) A TCP/IP protokollcsalád áttekintése Az Internet néven ismert világméretű hálózat működése a TCP/IP protokollcsaládon alapul.

Részletesebben

Kapcsolás. Áramkörkapcsolás, virtuális áramkörkapcsolás, hullámhosszkapcsolás,

Kapcsolás. Áramkörkapcsolás, virtuális áramkörkapcsolás, hullámhosszkapcsolás, Kapcsolás Áramkörkapcsolás, virtuális áramkörkapcsolás, hullámhosszkapcsolás, csomagkapcsolás 1 A tárgy anyagának felépítése A) Bevezetés Hálózatok és rendszerek bevezetése példákon A fizikai szintű kommunikáció

Részletesebben

Szolgáltatások minőségi mutatói - lakossági. Tartalom. 3. sz. melléklet

Szolgáltatások minőségi mutatói - lakossági. Tartalom. 3. sz. melléklet 3. sz. melléklet Szolgáltatások minőségi mutatói - lakossági Tartalom 1.1 GTS Ethernet Line... 3 1.2 GTS Ethernet VPN... 3 1.3 GTS Media Line... 3 1.4 GTS Internet Access (Bérelt vonali Internet)... 3

Részletesebben

.. számú Egyedi előfizetői szerződés.számú módosítása IP Complex Plusz szolgáltatás IPsound+ opció igénybevételére

.. számú Egyedi előfizetői szerződés.számú módosítása IP Complex Plusz szolgáltatás IPsound+ opció igénybevételére .. számú Egyedi előfizetői szerződés.számú módosítása IP Complex Plusz szolgáltatás IPsound+ opció igénybevételére 1. A szolgáltató adatai 1.1. 1.1. A szolgáltató cégneve, székhelye, postacíme, cégjegyzékszáma

Részletesebben

Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András goya@eik.bme.hu BME EISzK

Gigabit Ethernet, 10 Gigabit Ethernet. Jákó András goya@eik.bme.hu BME EISzK Gigabit Ethernet, 10 Gigabit Ethernet Jákó András goya@eik.bme.hu BME EISzK Agenda Előzmények Gigabit Ethernet 1000Base-X 1000Base-T 10 Gigabit Ethernet Networkshop 2002. Gigabit Ethernet, 10 Gigabit Ethernet

Részletesebben

1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika

1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika 1/13. RL osztály Hálózati alapismeretek I. gyakorlat c. tantárgy Osztályozóvizsga tematika A vizsga leírása: A vizsga anyaga a Cisco Routing and Switching Bevezetés a hálózatok világába (1)és a Cisco R&S:

Részletesebben

GPON rendszerek bevezetése, alkalmazása a Magyar Telekom hálózatában

GPON rendszerek bevezetése, alkalmazása a Magyar Telekom hálózatában GPON rendszerek bevezetése, alkalmazása a Magyar Telekom hálózatában 16. Távközlési és Informatikai Hálózatok Szeminárium és Kiállítás, 2008. 2008.10.16. 1. oldal Információéhség csökkentése: kép, mozgókép

Részletesebben

* Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő rétegéhez. Kapcsolati réteg

* Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő rétegéhez. Kapcsolati réteg ét * Rendelje a PPP protokollt az TCP/IP rétegmodell megfelelő Kapcsolati réteg A Pont-pont protokoll (általánosan használt rövidítéssel: PPP az angol Point-to-Point Protocol kifejezésből) egy magas szintű

Részletesebben

3G / HSDPA. Tar Péter

3G / HSDPA. Tar Péter 3G / HSDPA Tar Péter 2 Hálózati felépítések 3 A GSM rádiócsatorna jellemzői FDMA / TDMA (frekvenciaosztásos/idõosztásos) csatorna-hozzáférés f 1 0 1 2 3 4 5 6 7 idõ f 2 0 1 2 3 4 5 6 7 4 Kapacitás Agner

Részletesebben

Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004

Kábel nélküli hálózatok. Agrárinformatikai Nyári Egyetem Gödöllő 2004 Kábel nélküli hálózatok Agrárinformatikai Nyári Egyetem Gödöllő 2004 Érintett témák Mért van szükségünk kábelnélküli hálózatra? Hogyan válasszunk a megoldások közül? Milyen elemekből építkezhetünk? Milyen

Részletesebben

Számítógép hálózatok

Számítógép hálózatok Számítógép hálózatok Számítógép hálózat fogalma A számítógép-hálózatok alatt az egymással kapcsolatban lévő önálló számítógépek rendszerét értjük. Miért építünk hálózatot? Információ csere lehetősége Központosított

Részletesebben

Az SDH technológia A technológia és a hálózatszervezés összefoglaló áttekintése

Az SDH technológia A technológia és a hálózatszervezés összefoglaló áttekintése A technológia és a hálózatszervezés összefoglaló áttekintése BME Híradástechnikai Tanszék 1998. TARTALOM 1 AZ SDH TECHNOLÓGIA MEGHATÁROZÓ ELŐNYEI...3 2 AZ SDH HÁLÓZAT MŰKÖDÉSÉNEK ALAPELVEI...4 2.1 Jelfolyamsebesség...5

Részletesebben

Informatikai eszközök fizikai alapjai Lovász Béla

Informatikai eszközök fizikai alapjai Lovász Béla Informatikai eszközök fizikai alapjai Lovász Béla Kódolás Moduláció Morzekód Mágneses tárolás merevlemezeken Modulációs eljárások típusai Kódolás A kód megállapodás szerinti jelek vagy szimbólumok rendszere,

Részletesebben

Dr. Wührl Tibor Ph.D. MsC 05 Ea. Szállítási protokollok - Bevezetés

Dr. Wührl Tibor Ph.D. MsC 05 Ea. Szállítási protokollok - Bevezetés Dr. Wührl Tibor Ph.D. MsC 05 Ea Szállítási protokollok - Bevezetés Szállítási protokollok szükségessége A 3. réteg feladat az volt, hogy az adatcsomagok a megfelelő hálózati végpontra eljussanak. A kapcsolás

Részletesebben

INVERSE MULTIPLEXER RACK

INVERSE MULTIPLEXER RACK SP 7505 Tartalomjegyzék...1 Általános ismertetés...2 Követelmények...2 Felépítése és működése...3 Beállítások...3 Felügyelet...3 Csatlakozók...3 Kijelzők...3 Műszaki adatok:...4 G703 felület:...4 LAN felület:...4

Részletesebben

Szolgáltatások és alkalmazások (VITMM131)

Szolgáltatások és alkalmazások (VITMM131) Szolgáltatások és alkalmazások (VITMM131) Internet-alapú szolgáltatások (folyt.) Vidács Attila Távközlési és Médiainformatikai Tsz. I.B.228, T:19-25, vidacs@tmit.bme.hu Tartalom 11/02/11 Internet-alapú

Részletesebben

A digitális KábelTV melléktermékeinek minőségi kérdései

A digitális KábelTV melléktermékeinek minőségi kérdései A digitális KábelTV melléktermékeinek minőségi kérdései Előadó: dr. Darabos Zoltán +36 30 9448 255 drdarabos@compu-consult.hu COMPU-CONSULT Kft ügyvezető HTE 2013. Június 18. Program 1. Mik a melléktermékek?

Részletesebben

Rohonczy János: Hálózatok

Rohonczy János: Hálózatok Rohonczy János: Hálózatok Rohonczy János (ELTE) 2005 v.1.0 1 Topológia fa csillag gyűrű busz busz / gerinc Rohonczy János (ELTE) 2005 v.1.0 2 Kiterjedés LAN MAN WAN Rohonczy János (ELTE) 2005 v.1.0 3 Fizikai

Részletesebben

Számítógépes Hálózatok 2012

Számítógépes Hálózatok 2012 Számítógépes Hálózatok 22 4. Adatkapcsolati réteg CRC, utólagos hibajavítás Hálózatok, 22 Hibafelismerés: CRC Hatékony hibafelismerés: Cyclic Redundancy Check (CRC) A gyakorlatban gyakran használt kód

Részletesebben

I. Házi Feladat. internet. Határidő: 2011. V. 30.

I. Házi Feladat. internet. Határidő: 2011. V. 30. I. Házi Feladat Határidő: 2011. V. 30. Feladat 1. (1 pont) Tegyük fel, hogy az A és B hosztok az interneten keresztül vannak összekapcsolva. A internet B 1. ábra. a 1-hez tartozó ábra 1. Ha a legtöbb Internetes

Részletesebben

MPLS - Multi-Protocol Label Switching (Többprotokollos címkekapcsolás) Számítógép-hálózatok 2009

MPLS - Multi-Protocol Label Switching (Többprotokollos címkekapcsolás) Számítógép-hálózatok 2009 MPLS - Multi-Protocol Label Switching (Többprotokollos címkekapcsolás) Számítógép-hálózatok 2009 Összeköttetés-alapú hálózatok A csomópontok csomagtovábbítási tevékenysége (packet forwarding) egyszerű,

Részletesebben

Általános Szerződési Feltételek Üzleti szolgáltatások

Általános Szerződési Feltételek Üzleti szolgáltatások Tartalom 1.1 GTS Ethernet Line... 5 1.1.1 Szolgáltatás várható kiépítési ideje... 6 1.1.2 Szolgáltatás tényleges kiépítési ideje... 6 1.1.3 Szolgáltatás rendelkezésre állása... 6 1.1.4 Maximális hibaelhárítási

Részletesebben

Építsünk IP telefont!

Építsünk IP telefont! Építsünk IP telefont! Moldován István moldovan@ttt-atm.ttt.bme.hu BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM TÁVKÖZLÉSI ÉS MÉDIAINFORMATIKAI TANSZÉK TANTÁRGY INFORMÁCIÓK Órarend 2 óra előadás, 2 óra

Részletesebben

10. fejezet Az adatkapcsolati réteg

10. fejezet Az adatkapcsolati réteg 10. fejezet Az adatkapcsolati réteg Az adatkapcsolati réteg (Data Link Layer) Előzetesen összefoglalva, az adatkapcsolati réteg feladata abban áll, hogy biztosítsa azt, hogy az adó oldali adatok a vevő

Részletesebben

Hálózati architektúrák és rendszerek. Nyilvános kapcsolt mobil hálózatok (celluláris hálózatok) 2. rész

Hálózati architektúrák és rendszerek. Nyilvános kapcsolt mobil hálózatok (celluláris hálózatok) 2. rész Hálózati architektúrák és rendszerek Nyilvános kapcsolt mobil hálózatok (celluláris hálózatok) 2. rész 1 A mobil rendszerek generációi 2G Digitális beszédtovábbítás Jó minőség Új szolgáltatások és alkalmazások,

Részletesebben

Tűzfalak működése és összehasonlításuk

Tűzfalak működése és összehasonlításuk Tűzfalak működése és összehasonlításuk Készítette Sári Zoltán YF5D3E Óbudai Egyetem Neumann János Informatikai Kar 1 1. Bevezetés A tűzfalak fejlődése a számítógépes hálózatok evolúciójával párhuzamosan,

Részletesebben

ADSL0001 - ADSL alapismeretek

ADSL0001 - ADSL alapismeretek ADSL0001 - ADSL alapismeretek 1. Bevezetõ A távközlés területén két fõ irányzat terjed: a mobilizáció és az integráció. A mobil távközlésnél cél, hogy a felhasználó mindenhol elérhetõ legyen és ehhez a

Részletesebben

ADSL0001 - ADSL alapismeretek

ADSL0001 - ADSL alapismeretek Oktatási Igazgatóság ADSL0001 - ADSL alapismeretek Modulgazda: Tóth Gábor Tel.: 431-1734 Tóth Gábor/OKTIG/HTC2 (toth.gabor2@ln.matav.hu) Szakmai segítség: Fodor Krisztián Tel.:431-1676 http://linux4.toig.matav.hu:8900/adsl0001/tananyag/index.htm

Részletesebben

Advanced PT activity: Fejlesztési feladatok

Advanced PT activity: Fejlesztési feladatok Advanced PT activity: Fejlesztési feladatok Ebben a feladatban a korábban megismert hálózati topológia módosított változatán kell különböző konfigurációs feladatokat elvégezni. A feladat célja felmérni

Részletesebben

OPTIKAI HÁLÓZATSZERELÉS - ALAPTANFOLYAM - ELMÉLET

OPTIKAI HÁLÓZATSZERELÉS - ALAPTANFOLYAM - ELMÉLET OPTIKAI HÁLÓZATSZERELÉS - ALAPTANFOLYAM - ELMÉLET Optikai hálózatok és kialakításuk - hány optikai hálózattípus is van - miképp csoportosítanánk - mit kell megvalósítanunk B.L.G. 2014 nov. 5. Jellemző

Részletesebben

A hálózattervezés alapvető ismeretei

A hálózattervezés alapvető ismeretei A hálózattervezés alapvető ismeretei Infokommunikációs hálózatok tervezése és üzemeltetése 2011 2011 Sipos Attila ügyvivő szakértő BME Híradástechnikai Tanszék siposa@hit.bme.hu A terv általános meghatározásai

Részletesebben

Előadó: Nagy István (A65)

Előadó: Nagy István (A65) Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,

Részletesebben

Általános Szerződési Feltételek Üzleti szolgáltatások

Általános Szerződési Feltételek Üzleti szolgáltatások Tartalom 1.1 GTS Ethernet Line... 5 1.1.1 Szolgáltatás várható kiépítési ideje... 6 1.1.2 Szolgáltatás tényleges kiépítési ideje... 6 1.1.3 Szolgáltatás rendelkezésre állása... 6 1.1.4 Maximális hibaelhárítási

Részletesebben

2011 TAVASZI FÉLÉV 3. LABORGYAKORLAT PRÉM DÁNIEL ÓBUDAI EGYETEM. IP címzés. Számítógép hálózatok gyakorlata

2011 TAVASZI FÉLÉV 3. LABORGYAKORLAT PRÉM DÁNIEL ÓBUDAI EGYETEM. IP címzés. Számítógép hálózatok gyakorlata IP címzés Számítógép hálózatok gyakorlata ÓBUDAI EGYETEM 2011 TAVASZI FÉLÉV 3. LABORGYAKORLAT PRÉM DÁNIEL Az IP cím 172. 16. 254. 1 10101100. 00010000. 11111110. 00000001 Az IP cím logikai címzést tesz

Részletesebben

Györgyi Tamás. Szoba: A 131 Tanári.

Györgyi Tamás. Szoba: A 131 Tanári. Györgyi Tamás Szoba: A 131 Tanári E-Mail: gyorgyit@petriktiszk.hu 2 Számítógépek megjelenésekor mindenki külön dolgozott. (Personal Computer) A fejlődéssel megjelent az igény a számítógépek összekapcsolására.

Részletesebben

Véges állapotú gépek (FSM) tervezése

Véges állapotú gépek (FSM) tervezése Véges állapotú gépek (FSM) tervezése F1. A 2. gyakorlaton foglalkoztunk a 3-mal vagy 5-tel osztható 4 bites számok felismerésével. Abban a feladatban a bemenet bitpárhuzamosan, azaz egy időben minden adatbit

Részletesebben

Frekvencia tartományok. Számítógépes Hálózatok és Internet Eszközök. Frekvencia tartományok rádió kommunikációhoz

Frekvencia tartományok. Számítógépes Hálózatok és Internet Eszközök. Frekvencia tartományok rádió kommunikációhoz Frekvencia tartományok Számítógépes Hálózatok és Internet Eszközök 2007 5. Fizikai réteg Médium közös használata, példa: ADSL LF (Low Frequency) = LW (Langwelle) = hosszúhullám MF (Medium Frequency) =

Részletesebben

Kommunikációs rendszerek programozása. Switch-ek

Kommunikációs rendszerek programozása. Switch-ek Kommunikációs rendszerek programozása ről általában HUB, Bridge, L2 Switch, L3 Switch, Router 10/100/1000 switch-ek, switch-hub Néhány fontosabb működési paraméter Hátlap (backplane) sávszélesség (Gbps)

Részletesebben